Standard

Predictor-Based Controls: The Implementation Problem. / Kharitonov, V.L.

в: Differential Equations, Том 51, № 13, 2015, стр. 1675-1682.

Результаты исследований: Научные публикации в периодических изданияхстатья

Harvard

Kharitonov, VL 2015, 'Predictor-Based Controls: The Implementation Problem', Differential Equations, Том. 51, № 13, стр. 1675-1682. https://doi.org/10.1134/S0012266115130017

APA

Vancouver

Author

Kharitonov, V.L. / Predictor-Based Controls: The Implementation Problem. в: Differential Equations. 2015 ; Том 51, № 13. стр. 1675-1682.

BibTeX

@article{6d2771c218a741dcb1d557d5193a6627,
title = "Predictor-Based Controls: The Implementation Problem",
abstract = "Abstract—The dynamic controller design problem for systems with delay in the state and control variables is studied. The main attention is paid to the practical implementation of the controllers. We show that the closed-loop system remains exponentially stable if the integral terms are approximated by finite Riemann type sums.",
author = "V.L. Kharitonov",
year = "2015",
doi = "10.1134/S0012266115130017",
language = "English",
volume = "51",
pages = "1675--1682",
journal = "Differential Equations",
issn = "0012-2661",
publisher = "Pleiades Publishing",
number = "13",

}

RIS

TY - JOUR

T1 - Predictor-Based Controls: The Implementation Problem

AU - Kharitonov, V.L.

PY - 2015

Y1 - 2015

N2 - Abstract—The dynamic controller design problem for systems with delay in the state and control variables is studied. The main attention is paid to the practical implementation of the controllers. We show that the closed-loop system remains exponentially stable if the integral terms are approximated by finite Riemann type sums.

AB - Abstract—The dynamic controller design problem for systems with delay in the state and control variables is studied. The main attention is paid to the practical implementation of the controllers. We show that the closed-loop system remains exponentially stable if the integral terms are approximated by finite Riemann type sums.

U2 - 10.1134/S0012266115130017

DO - 10.1134/S0012266115130017

M3 - Article

VL - 51

SP - 1675

EP - 1682

JO - Differential Equations

JF - Differential Equations

SN - 0012-2661

IS - 13

ER -

ID: 3984877