Standard

Prediction and observation of an antiferromagnetic topological insulator. / Otrokov, M. M.; Klimovskikh, I. I.; Bentmann, H.; Estyunin, D.; Zeugner, A.; Aliev, Z. S.; Gaß, S.; Wolter, A. U.B.; Koroleva, A. V.; Shikin, A. M.; Blanco-Rey, M.; Hoffmann, M.; Rusinov, I. P.; Vyazovskaya, A. Yu; Eremeev, S. V.; Koroteev, Yu M.; Kuznetsov, V. M.; Freyse, F.; Sánchez-Barriga, J.; Amiraslanov, I. R.; Babanly, M. B.; Mamedov, N. T.; Abdullayev, N. A.; Zverev, V. N.; Alfonsov, A.; Kataev, V.; Büchner, B.; Schwier, E. F.; Kumar, S.; Kimura, A.; Petaccia, L.; Di Santo, G.; Vidal, R. C.; Schatz, S.; Kißner, K.; Ünzelmann, M.; Min, C. H.; Moser, Simon; Peixoto, T. R.F.; Reinert, F.; Ernst, A.; Echenique, P. M.; Isaeva, A.; Chulkov, E. V.

в: Nature, Том 576, № 7787, 19.12.2019, стр. 416-422.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Otrokov, MM, Klimovskikh, II, Bentmann, H, Estyunin, D, Zeugner, A, Aliev, ZS, Gaß, S, Wolter, AUB, Koroleva, AV, Shikin, AM, Blanco-Rey, M, Hoffmann, M, Rusinov, IP, Vyazovskaya, AY, Eremeev, SV, Koroteev, YM, Kuznetsov, VM, Freyse, F, Sánchez-Barriga, J, Amiraslanov, IR, Babanly, MB, Mamedov, NT, Abdullayev, NA, Zverev, VN, Alfonsov, A, Kataev, V, Büchner, B, Schwier, EF, Kumar, S, Kimura, A, Petaccia, L, Di Santo, G, Vidal, RC, Schatz, S, Kißner, K, Ünzelmann, M, Min, CH, Moser, S, Peixoto, TRF, Reinert, F, Ernst, A, Echenique, PM, Isaeva, A & Chulkov, EV 2019, 'Prediction and observation of an antiferromagnetic topological insulator', Nature, Том. 576, № 7787, стр. 416-422. https://doi.org/10.1038/s41586-019-1840-9

APA

Otrokov, M. M., Klimovskikh, I. I., Bentmann, H., Estyunin, D., Zeugner, A., Aliev, Z. S., Gaß, S., Wolter, A. U. B., Koroleva, A. V., Shikin, A. M., Blanco-Rey, M., Hoffmann, M., Rusinov, I. P., Vyazovskaya, A. Y., Eremeev, S. V., Koroteev, Y. M., Kuznetsov, V. M., Freyse, F., Sánchez-Barriga, J., ... Chulkov, E. V. (2019). Prediction and observation of an antiferromagnetic topological insulator. Nature, 576(7787), 416-422. https://doi.org/10.1038/s41586-019-1840-9

Vancouver

Author

Otrokov, M. M. ; Klimovskikh, I. I. ; Bentmann, H. ; Estyunin, D. ; Zeugner, A. ; Aliev, Z. S. ; Gaß, S. ; Wolter, A. U.B. ; Koroleva, A. V. ; Shikin, A. M. ; Blanco-Rey, M. ; Hoffmann, M. ; Rusinov, I. P. ; Vyazovskaya, A. Yu ; Eremeev, S. V. ; Koroteev, Yu M. ; Kuznetsov, V. M. ; Freyse, F. ; Sánchez-Barriga, J. ; Amiraslanov, I. R. ; Babanly, M. B. ; Mamedov, N. T. ; Abdullayev, N. A. ; Zverev, V. N. ; Alfonsov, A. ; Kataev, V. ; Büchner, B. ; Schwier, E. F. ; Kumar, S. ; Kimura, A. ; Petaccia, L. ; Di Santo, G. ; Vidal, R. C. ; Schatz, S. ; Kißner, K. ; Ünzelmann, M. ; Min, C. H. ; Moser, Simon ; Peixoto, T. R.F. ; Reinert, F. ; Ernst, A. ; Echenique, P. M. ; Isaeva, A. ; Chulkov, E. V. / Prediction and observation of an antiferromagnetic topological insulator. в: Nature. 2019 ; Том 576, № 7787. стр. 416-422.

BibTeX

@article{11ee62f0dada4fb29b35d6f006e604ac,
title = "Prediction and observation of an antiferromagnetic topological insulator",
abstract = "Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator—a stoichiometric well ordered magnetic compound—could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering that MnBi2Te4 shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6–8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.",
keywords = "Electronic devices, Electronic properties and materials, Magnetic properties and materials, Spintronics, Topological insulators, ENERGY, APPROXIMATION, X-RAY-ABSORPTION, CRYSTAL, HETEROSTRUCTURE, POTENTIAL MODEL, PHOTOEMISSION, FERROMAGNETISM, ARPES SYSTEM, ELECTRONIC-STRUCTURE",
author = "Otrokov, {M. M.} and Klimovskikh, {I. I.} and H. Bentmann and D. Estyunin and A. Zeugner and Aliev, {Z. S.} and S. Ga{\ss} and Wolter, {A. U.B.} and Koroleva, {A. V.} and Shikin, {A. M.} and M. Blanco-Rey and M. Hoffmann and Rusinov, {I. P.} and Vyazovskaya, {A. Yu} and Eremeev, {S. V.} and Koroteev, {Yu M.} and Kuznetsov, {V. M.} and F. Freyse and J. S{\'a}nchez-Barriga and Amiraslanov, {I. R.} and Babanly, {M. B.} and Mamedov, {N. T.} and Abdullayev, {N. A.} and Zverev, {V. N.} and A. Alfonsov and V. Kataev and B. B{\"u}chner and Schwier, {E. F.} and S. Kumar and A. Kimura and L. Petaccia and {Di Santo}, G. and Vidal, {R. C.} and S. Schatz and K. Ki{\ss}ner and M. {\"U}nzelmann and Min, {C. H.} and Simon Moser and Peixoto, {T. R.F.} and F. Reinert and A. Ernst and Echenique, {P. M.} and A. Isaeva and Chulkov, {E. V.}",
note = "Otrokov, M.M., Klimovskikh, I.I., Bentmann, H. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019) doi:10.1038/s41586-019-1840-9",
year = "2019",
month = dec,
day = "19",
doi = "10.1038/s41586-019-1840-9",
language = "English",
volume = "576",
pages = "416--422",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7787",

}

RIS

TY - JOUR

T1 - Prediction and observation of an antiferromagnetic topological insulator

AU - Otrokov, M. M.

AU - Klimovskikh, I. I.

AU - Bentmann, H.

AU - Estyunin, D.

AU - Zeugner, A.

AU - Aliev, Z. S.

AU - Gaß, S.

AU - Wolter, A. U.B.

AU - Koroleva, A. V.

AU - Shikin, A. M.

AU - Blanco-Rey, M.

AU - Hoffmann, M.

AU - Rusinov, I. P.

AU - Vyazovskaya, A. Yu

AU - Eremeev, S. V.

AU - Koroteev, Yu M.

AU - Kuznetsov, V. M.

AU - Freyse, F.

AU - Sánchez-Barriga, J.

AU - Amiraslanov, I. R.

AU - Babanly, M. B.

AU - Mamedov, N. T.

AU - Abdullayev, N. A.

AU - Zverev, V. N.

AU - Alfonsov, A.

AU - Kataev, V.

AU - Büchner, B.

AU - Schwier, E. F.

AU - Kumar, S.

AU - Kimura, A.

AU - Petaccia, L.

AU - Di Santo, G.

AU - Vidal, R. C.

AU - Schatz, S.

AU - Kißner, K.

AU - Ünzelmann, M.

AU - Min, C. H.

AU - Moser, Simon

AU - Peixoto, T. R.F.

AU - Reinert, F.

AU - Ernst, A.

AU - Echenique, P. M.

AU - Isaeva, A.

AU - Chulkov, E. V.

N1 - Otrokov, M.M., Klimovskikh, I.I., Bentmann, H. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019) doi:10.1038/s41586-019-1840-9

PY - 2019/12/19

Y1 - 2019/12/19

N2 - Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator—a stoichiometric well ordered magnetic compound—could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering that MnBi2Te4 shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6–8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.

AB - Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator—a stoichiometric well ordered magnetic compound—could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering that MnBi2Te4 shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6–8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.

KW - Electronic devices

KW - Electronic properties and materials

KW - Magnetic properties and materials

KW - Spintronics

KW - Topological insulators

KW - ENERGY

KW - APPROXIMATION

KW - X-RAY-ABSORPTION

KW - CRYSTAL

KW - HETEROSTRUCTURE

KW - POTENTIAL MODEL

KW - PHOTOEMISSION

KW - FERROMAGNETISM

KW - ARPES SYSTEM

KW - ELECTRONIC-STRUCTURE

UR - http://www.scopus.com/inward/record.url?scp=85076901307&partnerID=8YFLogxK

UR - http://arxiv.org/abs/1809.07389

UR - http://www.mendeley.com/research/prediction-observation-first-antiferromagnetic-topological-insulator

U2 - 10.1038/s41586-019-1840-9

DO - 10.1038/s41586-019-1840-9

M3 - Article

C2 - 31853084

AN - SCOPUS:85076901307

VL - 576

SP - 416

EP - 422

JO - Nature

JF - Nature

SN - 0028-0836

IS - 7787

ER -

ID: 49500346