DOI

The paper is devoted to the optimality conditions as determined by Pontryagin’s maximum principle for a non-cooperative differential game with continuous updating. Here it is assumed that at each time instant players have or use information about the game structure defined for the closed time interval with a fixed duration. The major difficulty in such a setting is how to define players’ behavior as the time evolves. Current time continuously evolves with an updating interval. As a solution for a non-cooperative game model, we adopt an open-loop Nash equilibrium within a setting of continuous updating. Theoretical results are demonstrated on an advertising game model, both initial and continuous updating versions are considered. A comparison of non-cooperative strategies and trajectories for both cases are presented.

Язык оригиналаанглийский
Название основной публикацииMathematical Optimization Theory and Operations Research
Подзаголовок основной публикации19th International Conference, MOTOR 2020, Revised Selected Papers
РедакторыYury Kochetov, Igor Bykadorov, Tatiana Gruzdeva
ИздательSpringer Nature
Страницы256-270
Число страниц15
ISBN (печатное издание)9783030586560
DOI
СостояниеОпубликовано - 2020
Событие19th International Conference on Mathematical Optimization Theory and Operations Research,MOTOR 2020 - Novosibirsk, Российская Федерация
Продолжительность: 6 июл 202010 июл 2020

Серия публикаций

НазваниеCommunications in Computer and Information Science
Том1275 CCIS
ISSN (печатное издание)1865-0929
ISSN (электронное издание)1865-0937

конференция

конференция19th International Conference on Mathematical Optimization Theory and Operations Research,MOTOR 2020
Страна/TерриторияРоссийская Федерация
ГородNovosibirsk
Период6/07/2010/07/20

    Предметные области Scopus

  • Компьютерные науки (все)
  • Математика (все)

ID: 70984324