DOI

  • Elena Arseneva
  • Prosenjit Bose
  • Pilar Cano
  • Anthony D’Angelo
  • Vida Dujmović
  • Fabrizio Frati
  • Stefan Langerman
  • Alessandra Tappini

We study the question whether a crossing-free 3D morph between two straight-line drawings of an n-vertex tree can be constructed consisting of a small number of linear morphing steps. We look both at the case in which the two given drawings are two-dimensional and at the one in which they are three-dimensional. In the former setting we prove that a crossing-free 3D morph always exists with O(log n) steps, while for the latter Θ(n) steps are always sufficient and sometimes necessary.

Язык оригиналаанглийский
Название основной публикацииGraph Drawing and Network Visualization - 26th International Symposium, GD 2018, Proceedings
РедакторыTherese Biedl, Andreas Kerren
ИздательSpringer Nature
Страницы371-384
Число страниц14
ISBN (печатное издание)9783030044138
DOI
СостояниеОпубликовано - 1 янв 2018
Событие26th International Symposium on Graph Drawing and Network Visualization, GD 2018 - Barcelona, Испания
Продолжительность: 26 сен 201828 сен 2018

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том11282 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция26th International Symposium on Graph Drawing and Network Visualization, GD 2018
Страна/TерриторияИспания
ГородBarcelona
Период26/09/1828/09/18

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 39288412