Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
We study the question whether a crossing-free 3D morph between two straight-line drawings of an n-vertex tree can be constructed consisting of a small number of linear morphing steps. We look both at the case in which the two given drawings are two-dimensional and at the one in which they are three-dimensional. In the former setting we prove that a crossing-free 3D morph always exists with O(log n) steps, while for the latter Θ(n) steps are always sufficient and sometimes necessary.
| Язык оригинала | английский |
|---|---|
| Название основной публикации | Graph Drawing and Network Visualization - 26th International Symposium, GD 2018, Proceedings |
| Редакторы | Therese Biedl, Andreas Kerren |
| Издатель | Springer Nature |
| Страницы | 371-384 |
| Число страниц | 14 |
| ISBN (печатное издание) | 9783030044138 |
| DOI | |
| Состояние | Опубликовано - 1 янв 2018 |
| Событие | 26th International Symposium on Graph Drawing and Network Visualization, GD 2018 - Barcelona, Испания Продолжительность: 26 сен 2018 → 28 сен 2018 |
| Название | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
|---|---|
| Том | 11282 LNCS |
| ISSN (печатное издание) | 0302-9743 |
| ISSN (электронное издание) | 1611-3349 |
| конференция | 26th International Symposium on Graph Drawing and Network Visualization, GD 2018 |
|---|---|
| Страна/Tерритория | Испания |
| Город | Barcelona |
| Период | 26/09/18 → 28/09/18 |
ID: 39288412