A black hole x-ray binary (XRB) system forms when gas is stripped from a normal star and accretes onto a black hole, which heats the gas sufficiently to emit x-rays. We report a polarimetric observation of the XRB Cygnus X-1 using the Imaging X-ray Polarimetry Explorer. The electric field position angle aligns with the outflowing jet, indicating that the jet is launched from the inner x-ray?emitting region. The polarization degree is 4.01 ± 0.20% at 2 to 8 kiloelectronvolts, implying that the accretion disk is viewed closer to edge-on than the binary orbit. These observations reveal that hot x-ray?emitting plasma is spatially extended in a plane perpendicular to, not parallel to, the jet axis. A black hole in a binary system can rip material off of its companion star, which heats up and forms an accretion disk. The disc emits light in the optical and x-ray bands, forming an x-ray binary (XRB) system. Some XRBs also launch a jet of fast-moving material that is visible at radio wavelengths. Krawczynski et al. observed the x-ray polarization of Cygnus X-1, a black hole XRB with a radio jet. By comparing the measured polarization properties with several competing XRB models, they eliminated some hypothesized geometries and determined that the x-ray?emitting region extends parallel to the accretion disc. ?KTS x-ray polarization measurements determine the geometric arrangement of hot material accreting onto a black hole.