DOI

Let Ω⊂R2 be a countably-connected domain. In Ω, consider closed differential forms of degree 1 with components in L2(Ω). Further, consider sequences of periods of such forms around holes in Ω, i.e. around bounded connected components of R2∖Ω. For which domains Ω the collection of such a period sequences coincides with ℓ2? We give an answer in terms of metric properties of holes in Ω.

Язык оригиналаанглийский
Страницы (с-по)1060-1064
Число страниц5
ЖурналComptes Rendus Mathematique
Том354
Номер выпуска11
DOI
СостояниеОпубликовано - ноя 2016

    Предметные области Scopus

  • Математика (все)
  • Анализ
  • Геометрия и топология

    Области исследований

  • planar countably connected domains, period operators for differential forms, complete interpolation property, Bergman spaces

ID: 36498022