Standard

Periodic Convergence for a Class of Nonlinear Time-Delay Systems. / Александров, Александр Юрьевич; Efimov, Denis V.; Xubin, Ping.

в: IEEE Control Systems Letters, Том 9, 2025, стр. 96-101.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Александров, АЮ, Efimov, DV & Xubin, P 2025, 'Periodic Convergence for a Class of Nonlinear Time-Delay Systems', IEEE Control Systems Letters, Том. 9, стр. 96-101. https://doi.org/10.1109/lcsys.2025.3564586

APA

Vancouver

Author

Александров, Александр Юрьевич ; Efimov, Denis V. ; Xubin, Ping. / Periodic Convergence for a Class of Nonlinear Time-Delay Systems. в: IEEE Control Systems Letters. 2025 ; Том 9. стр. 96-101.

BibTeX

@article{de915f4b00f443b2958df6a850a9b420,
title = "Periodic Convergence for a Class of Nonlinear Time-Delay Systems",
abstract = "The new existence conditions for periodic steady-state solution in time-delay convergent systems are presented. The main advantage of this result is that highly nonlinear (without meaningful linear approximation) dynamics are allowed for analysis. These conditions are developed for Persidskii and Lotka-Volterra time-delay systems. The efficiency of the approach is demonstrated on academic examples of these models.",
author = "Александров, {Александр Юрьевич} and Efimov, {Denis V.} and Ping Xubin",
year = "2025",
doi = "10.1109/lcsys.2025.3564586",
language = "English",
volume = "9",
pages = "96--101",
journal = "IEEE Control Systems Letters",
issn = "2475-1456",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

RIS

TY - JOUR

T1 - Periodic Convergence for a Class of Nonlinear Time-Delay Systems

AU - Александров, Александр Юрьевич

AU - Efimov, Denis V.

AU - Xubin, Ping

PY - 2025

Y1 - 2025

N2 - The new existence conditions for periodic steady-state solution in time-delay convergent systems are presented. The main advantage of this result is that highly nonlinear (without meaningful linear approximation) dynamics are allowed for analysis. These conditions are developed for Persidskii and Lotka-Volterra time-delay systems. The efficiency of the approach is demonstrated on academic examples of these models.

AB - The new existence conditions for periodic steady-state solution in time-delay convergent systems are presented. The main advantage of this result is that highly nonlinear (without meaningful linear approximation) dynamics are allowed for analysis. These conditions are developed for Persidskii and Lotka-Volterra time-delay systems. The efficiency of the approach is demonstrated on academic examples of these models.

UR - https://www.mendeley.com/catalogue/a333bddf-6f59-39e8-aa33-f99b5de39301/

U2 - 10.1109/lcsys.2025.3564586

DO - 10.1109/lcsys.2025.3564586

M3 - Article

VL - 9

SP - 96

EP - 101

JO - IEEE Control Systems Letters

JF - IEEE Control Systems Letters

SN - 2475-1456

ER -

ID: 135192456