Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Performance of global random search algorithms for large dimensions. / Pepelyshev, Andrey; Zhigljavsky, Anatoly; Žilinskas, Antanas.
в: Journal of Global Optimization, Том 71, № 1, 01.05.2018, стр. 57-71.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Performance of global random search algorithms for large dimensions
AU - Pepelyshev, Andrey
AU - Zhigljavsky, Anatoly
AU - Žilinskas, Antanas
PY - 2018/5/1
Y1 - 2018/5/1
N2 - We investigate the rate of convergence of general global random search (GRS) algorithms. We show that if the dimension of the feasible domain is large then it is impossible to give any guarantee that the global minimizer is found by a general GRS algorithm with reasonable accuracy. We then study precision of statistical estimates of the global minimum in the case of large dimensions. We show that these estimates also suffer the curse of dimensionality. Finally, we demonstrate that the use of quasi-random points in place of the random ones does not give any visible advantage in large dimensions.
AB - We investigate the rate of convergence of general global random search (GRS) algorithms. We show that if the dimension of the feasible domain is large then it is impossible to give any guarantee that the global minimizer is found by a general GRS algorithm with reasonable accuracy. We then study precision of statistical estimates of the global minimum in the case of large dimensions. We show that these estimates also suffer the curse of dimensionality. Finally, we demonstrate that the use of quasi-random points in place of the random ones does not give any visible advantage in large dimensions.
KW - Extreme value statistics
KW - Global optimization
KW - Random search
KW - Statistical models
UR - http://www.scopus.com/inward/record.url?scp=85020083322&partnerID=8YFLogxK
U2 - 10.1007/s10898-017-0535-8
DO - 10.1007/s10898-017-0535-8
M3 - Article
AN - SCOPUS:85020083322
VL - 71
SP - 57
EP - 71
JO - Journal of Global Optimization
JF - Journal of Global Optimization
SN - 0925-5001
IS - 1
ER -
ID: 50725798