Ссылки

DOI

One recent, significant advance in modeling source code for machine learning algorithms has been the introduction of path-based representation - an approach consisting in representing a snippet of code as a collection of paths from its syntax tree. Such representation efficiently captures the structure of code, which, in turn, carries its semantics and other information. Building the path-based representation involves parsing the code and extracting the paths from its syntax tree; these steps build up to a substantial technical job. With no common reusable toolkit existing for this task, the burden of mining diverts the focus of researchers from the essential work and hinders newcomers in the field of machine learning on code. In this paper, we present PathMiner - an open-source library for mining path-based representations of code. PathMiner is fast, flexible, well-tested, and easily extensible to support input code in any common programming language.
Язык оригиналаанглийский
Название основной публикацииProceedings - 2019 IEEE/ACM 16th International Conference on Mining Software Repositories, MSR 2019
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы13-17
Число страниц5
Том2019
ISBN (электронное издание)9781728134123
ISBN (печатное издание)9781728134123
DOI
СостояниеОпубликовано - мая 2019
Событие16th International Conference on Mining Software Repositories - Montreal, Канада
Продолжительность: 26 мая 201927 мая 2019

конференция

конференция16th International Conference on Mining Software Repositories
Сокращенное названиеMSR 2019
Страна/TерриторияКанада
ГородMontreal
Период26/05/1927/05/19

    Предметные области Scopus

  • Прикладные компьютерные науки
  • Программный продукт

ID: 43773778