DOI

The ant colony algorithm (ACO) is an intelligent optimization algorithm inspired by the behavior of ants searching for food in the nature. As a general stochastic optimization algorithm, the ant colony algorithm has been successfully applied to TSP, mobile robot path planning and other combinatorial optimization problems, and achieved good results. But because the probability of the algorithm is a typical algorithm, the parameters set in the algorithm is usually determined by experimental method, leading to the optimization of the performance closely related to people’s experience, it is difficult to optimize the algorithm performance. Moreover, the traditional ant colony algorithm has many shortcomings, such as long convergence time and easiness to fall into the local optimal solution. In order to overcome these shortcomings, in this paper, a large number of experimental data are analyzed to obtain the main appropriate parameters of the ant colony algorithm, such as the number (Forumala Presented). of ants, the number (Forumala Presented). of iterations, the influence factor (Forumala Presented)., and a new pheromone updating method that is related to the sine function is proposed in this paper, the simulation results show that the improved algorithm can accelerate the speed by 60%, and the global optimal solution can be found more easily than the original ant colony algorithm.

Язык оригиналаанглийский
Название основной публикацииConvergent Cognitive Information Technologies - 3rd International Conference, Convergent 2018, Revised Selected Papers
РедакторыVladimir Sukhomlin, Elena Zubareva
ИздательSpringer Nature
Страницы132-141
Число страниц10
ISBN (печатное издание)9783030374358
DOI
СостояниеОпубликовано - 2020
Событие3rd International Scientific Conference on Convergent Cognitive Information Technologies, Convergent 2018 - Moscow, Российская Федерация
Продолжительность: 29 ноя 20182 дек 2018

Серия публикаций

НазваниеCommunications in Computer and Information Science
Том1140 CCIS
ISSN (печатное издание)1865-0929
ISSN (электронное издание)1865-0937

конференция

конференция3rd International Scientific Conference on Convergent Cognitive Information Technologies, Convergent 2018
Страна/TерриторияРоссийская Федерация
ГородMoscow
Период29/11/182/12/18

    Предметные области Scopus

  • Компьютерные науки (все)
  • Математика (все)

ID: 88213933