Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
Passification based adaptive control under coordinate-parametric white noise disturbances. / Fradkov, A. L.; Razuvaeva, I. V.; Grigoriev, G. K.
8th IFAC Symposium on Nonlinear Control Systems, NOLCOS 2010. 14. ред. International Federation of Automatic Control, 2010. стр. 659-664 (IFAC Proceedings Volumes (IFAC-PapersOnline); Том 43, № 14).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
}
TY - GEN
T1 - Passification based adaptive control under coordinate-parametric white noise disturbances
AU - Fradkov, A. L.
AU - Razuvaeva, I. V.
AU - Grigoriev, G. K.
N1 - Funding Information: This work was supported in part by the Russian Foundation for Basic Research, project no. 08-01-00775 and by Federal Program ”Cadres”, contract 02.740.11.5056.
PY - 2010
Y1 - 2010
N2 - In the paper the basics of passification based adaptive control theory for stochastic continuous-time systems are introduced. Conditions for the mean square dissipativity of adaptive stabilization systems for a linear plant under coordinate-parametric white noise disturbances are obtained. A linear adaptive regulator with adaptation algorithm designed by the passification approach is proposed. The number of plant inputs may differ from that of outputs. The proof is based on the construction of a quadratic stochastic Lyapunov function. (In the case of purely parametric perturbations, the obtained conditions are known to be necessary and sufficient for the existence of a Lyapunov function with these properties.) Ultimate mean square boundedness (Levinson dissipativity) conditions for the designed closed loop system are obtained; it is shown that, in some special cases, the dissipativity of the closed loop system is preserved under white noise perturbations of arbitrary intensity. Stochastic G-passivity for nonsquare systems is introduced and necessary and sufficient conditions for strict stochastic G-passifiability are formulated.
AB - In the paper the basics of passification based adaptive control theory for stochastic continuous-time systems are introduced. Conditions for the mean square dissipativity of adaptive stabilization systems for a linear plant under coordinate-parametric white noise disturbances are obtained. A linear adaptive regulator with adaptation algorithm designed by the passification approach is proposed. The number of plant inputs may differ from that of outputs. The proof is based on the construction of a quadratic stochastic Lyapunov function. (In the case of purely parametric perturbations, the obtained conditions are known to be necessary and sufficient for the existence of a Lyapunov function with these properties.) Ultimate mean square boundedness (Levinson dissipativity) conditions for the designed closed loop system are obtained; it is shown that, in some special cases, the dissipativity of the closed loop system is preserved under white noise perturbations of arbitrary intensity. Stochastic G-passivity for nonsquare systems is introduced and necessary and sufficient conditions for strict stochastic G-passifiability are formulated.
KW - Adaptive control
KW - Ito equations
KW - Passification
KW - Stochastic dissipativity
UR - http://www.scopus.com/inward/record.url?scp=80051758922&partnerID=8YFLogxK
U2 - 10.3182/20100901-3-IT-2016.00266
DO - 10.3182/20100901-3-IT-2016.00266
M3 - Conference contribution
AN - SCOPUS:80051758922
SN - 9783902661807
T3 - IFAC Proceedings Volumes (IFAC-PapersOnline)
SP - 659
EP - 664
BT - 8th IFAC Symposium on Nonlinear Control Systems, NOLCOS 2010
PB - International Federation of Automatic Control
ER -
ID: 87375508