Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Overgroups of EO(n, R). / Vavilov, N. A.; Petrov, V. A.
в: St. Petersburg Mathematical Journal, Том 19, № 2, 2008, стр. 167-195.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Overgroups of EO(n, R)
AU - Vavilov, N. A.
AU - Petrov, V. A.
PY - 2008
Y1 - 2008
N2 - Let R be a commutative ring with 1, n a natural number, and let l = [n/2]. Suppose that 2 ∈ R∗ and l ≥ 3. We describe the subgroups of the general linear group GL(n, R) that contain the elementary orthogonal group EO(n, R). The main result of the paper says that, for every intermediate subgroup H, there exists a largest ideal A ⊴ R such that EEO(n, R, A) = EO(n, R)E(n, R, A) ⊴ H. Another important result is an explicit calculation of the normalizer of the group EEO(n, R, A). If R = K is a field, similar results were obtained earlier by Dye, King, Shang Zhi Li, and Bashkirov. For overgroups of the even split elementary orthogonal group EO(2l, R) and the elementary symplectic group Ep(2l, R), analogous results appeared in previous papers by the authors (Zapiski Nauchn. Semin. POMI, 2000, v. 272; Algebra i Analiz, 2003, v. 15, no. 3).
AB - Let R be a commutative ring with 1, n a natural number, and let l = [n/2]. Suppose that 2 ∈ R∗ and l ≥ 3. We describe the subgroups of the general linear group GL(n, R) that contain the elementary orthogonal group EO(n, R). The main result of the paper says that, for every intermediate subgroup H, there exists a largest ideal A ⊴ R such that EEO(n, R, A) = EO(n, R)E(n, R, A) ⊴ H. Another important result is an explicit calculation of the normalizer of the group EEO(n, R, A). If R = K is a field, similar results were obtained earlier by Dye, King, Shang Zhi Li, and Bashkirov. For overgroups of the even split elementary orthogonal group EO(2l, R) and the elementary symplectic group Ep(2l, R), analogous results appeared in previous papers by the authors (Zapiski Nauchn. Semin. POMI, 2000, v. 272; Algebra i Analiz, 2003, v. 15, no. 3).
KW - General linear group
KW - Overgroup
KW - Split elementary orthogonal group
UR - http://www.scopus.com/inward/record.url?scp=85009738238&partnerID=8YFLogxK
U2 - 10.1090/S1061-0022-08-00992-8
DO - 10.1090/S1061-0022-08-00992-8
M3 - Article
AN - SCOPUS:85009738238
VL - 19
SP - 167
EP - 195
JO - St. Petersburg Mathematical Journal
JF - St. Petersburg Mathematical Journal
SN - 1061-0022
IS - 2
ER -
ID: 33288596