Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Homotopy classes of mappings of a compact polyhedron X to the circle T form an Abelian group B(X), which is called the Bruschlinsky group and is canonically isomorphic to H1 (X; ℤ), Let L be an Abelian group, and let f: B(X) → L be a function. One says that the order of f does not exceed r if for each mapping a: X → T the value f([a]) is ℤ-linearly expressed via the characteristic function Ir(a): (X × T)r → ℤ of (Γa)r, where Γa ⊂ X × T is the graph of a. The (algebraic) degree of f is not greater than r if the finite differences of f of order r + 1 vanish. Conjecturally, the order of f is equal to the algebraic degree of f. The conjecture is proved in the case where dim X ≤ 2. Bibliography: 1 title.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 454-459 |
Число страниц | 6 |
Журнал | Journal of Mathematical Sciences |
Том | 161 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - 1 июл 2009 |
ID: 49886462