Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Orbital Contributions to the Electron g Factor in Semiconductor Nanowires. / Winkler, Georg W.; Varjas, Daniel; Skolasinski, Rafal; Soluyanov, Alexey A.; Troyer, Matthias; Wimmer, Michael.
в: Physical Review Letters, Том 119, № 3, 037701, 21.07.2017.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Orbital Contributions to the Electron g Factor in Semiconductor Nanowires
AU - Winkler, Georg W.
AU - Varjas, Daniel
AU - Skolasinski, Rafal
AU - Soluyanov, Alexey A.
AU - Troyer, Matthias
AU - Wimmer, Michael
PY - 2017/7/21
Y1 - 2017/7/21
N2 - Recent experiments on Majorana fermions in semiconductor nanowires [S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygard, P. Krogstrup, and C. M. Marcus, Nature (London) 531, 206 (2016)] revealed a surprisingly large electronic Lande g factor, several times larger than the bulk value-contrary to the expectation that confinement reduces the g factor. Here we assess the role of orbital contributions to the electron g factor in nanowires and quantum dots. We show that an L . S coupling in higher subbands leads to an enhancement of the g factor of an order of magnitude or more for small effective mass semiconductors. We validate our theoretical finding with simulations of InAs and InSb, showing that the effect persists even if cylindrical symmetry is broken. A huge anisotropy of the enhanced g factors under magnetic field rotation allows for a straightforward experimental test of this theory.
AB - Recent experiments on Majorana fermions in semiconductor nanowires [S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygard, P. Krogstrup, and C. M. Marcus, Nature (London) 531, 206 (2016)] revealed a surprisingly large electronic Lande g factor, several times larger than the bulk value-contrary to the expectation that confinement reduces the g factor. Here we assess the role of orbital contributions to the electron g factor in nanowires and quantum dots. We show that an L . S coupling in higher subbands leads to an enhancement of the g factor of an order of magnitude or more for small effective mass semiconductors. We validate our theoretical finding with simulations of InAs and InSb, showing that the effect persists even if cylindrical symmetry is broken. A huge anisotropy of the enhanced g factors under magnetic field rotation allows for a straightforward experimental test of this theory.
KW - INITIO MOLECULAR-DYNAMICS
KW - TOTAL-ENERGY CALCULATIONS
KW - AUGMENTED-WAVE METHOD
KW - DOT BAND-STRUCTURE
KW - QUANTUM-WELLS
KW - INSB NANOWIRE
KW - SUPERCONDUCTOR NANOWIRES
KW - MAJORANA FERMIONS
KW - CARBON NANOTUBES
KW - ANGULAR-MOMENTUM
U2 - 10.1103/PhysRevLett.119.037701
DO - 10.1103/PhysRevLett.119.037701
M3 - статья
VL - 119
JO - Physical Review Letters
JF - Physical Review Letters
SN - 0031-9007
IS - 3
M1 - 037701
ER -
ID: 9159544