DOI

High-pressure torsion at room temperature followed by two processing routes, either 1) annealing at 200 °C for 8 h or 2) elevated temperature (200 °C) high-pressure torsion, are employed to obtain simultaneous increase in mechanical strength and electrical conductivity of Al–2 wt%Fe. The comparative study of microstructure, particle distribution, mechanical properties, and electrical conductivity for both processing routes gives the optimal combination of high mechanical strength and high electrical conductivity in Al–2Fe alloy. It is shown that while the mechanical strength is approximately the same for both processing routes (>320 MPa), high-pressure torsion at elevated temperature results in higher conductivity (≥52% IACS) due to reduction of Fe solute atom concentration in Al matrix compared to annealing treatment. High-pressure torsion at 200 °C has been demonstrated as a new and effective way for obtaining combination of high mechanical strength and electrical conductivity in Al–Fe alloys.

Язык оригиналаанглийский
Номер статьи1700867
Число страниц7
ЖурналAdvanced Engineering Materials
Том20
Номер выпуска3
DOI
СостояниеОпубликовано - 1 мар 2018

    Предметные области Scopus

  • Физика конденсатов
  • Материаловедение (все)

ID: 16948785