Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
OPTIMIZATION APPROACH TO THE DESIGN OF NONLINEAR CONTROL SYSTEM CONTROLLERS. / Завадский, Сергей Вячеславович; Овсянников, Дмитрий Александрович; Мельников, Дмитрий Денисович.
в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Том 19, № 1, 2023, стр. 109-119.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - OPTIMIZATION APPROACH TO THE DESIGN OF NONLINEAR CONTROL SYSTEM CONTROLLERS
AU - Завадский, Сергей Вячеславович
AU - Овсянников, Дмитрий Александрович
AU - Мельников, Дмитрий Денисович
PY - 2023
Y1 - 2023
N2 - The optimization approach is applied to the synthesis and optimization of nonlinear realtime feedback optimal control system of a certain Maglev platform. To optimize the nonlinear control law, the integral functional criteria is minimized, which evaluates the quality of the dynamics of not one trajectory, but an ensemble of nonlinear trajectories of the system. The considered ensemble of trajectories covers the entire area of the engineering gap between the platform and the guide rails. In this area the magnetic forces provide highly nonlinear effects due to the considered design features of the object. At the same time, it is required to provide the stabilization within the entire engineering gap. It makes this statement to be a multi-input nonlinear control problem. The components of the feedback control law vector have a polynomial form of the state-space variables. As a result of computational optimization of trajectories ensemble, a class of Pareto-optimal polynomial regulators is constructed for considered control object. In the presented set, each Pareto-optimal point corresponds to a specific designed controller and investigated functional criteria which evaluates the entire ensemble of perturbed nonlinear trajectories. This allows a research engineer to choose various nonlinear regulators and achieve a compromise between stabilization accuracy and energy costs.
AB - The optimization approach is applied to the synthesis and optimization of nonlinear realtime feedback optimal control system of a certain Maglev platform. To optimize the nonlinear control law, the integral functional criteria is minimized, which evaluates the quality of the dynamics of not one trajectory, but an ensemble of nonlinear trajectories of the system. The considered ensemble of trajectories covers the entire area of the engineering gap between the platform and the guide rails. In this area the magnetic forces provide highly nonlinear effects due to the considered design features of the object. At the same time, it is required to provide the stabilization within the entire engineering gap. It makes this statement to be a multi-input nonlinear control problem. The components of the feedback control law vector have a polynomial form of the state-space variables. As a result of computational optimization of trajectories ensemble, a class of Pareto-optimal polynomial regulators is constructed for considered control object. In the presented set, each Pareto-optimal point corresponds to a specific designed controller and investigated functional criteria which evaluates the entire ensemble of perturbed nonlinear trajectories. This allows a research engineer to choose various nonlinear regulators and achieve a compromise between stabilization accuracy and energy costs.
KW - Maglev
KW - ensemble of trajectories
KW - nonlinear regulators
KW - nonlinear system
KW - optimization
KW - real-time feedback
KW - stabilization
UR - https://www.mendeley.com/catalogue/4e71e832-e4a8-3c98-88a6-bd3cf1e7cc91/
U2 - 10.21638/11701/spbu10.2023.109
DO - 10.21638/11701/spbu10.2023.109
M3 - Article
VL - 19
SP - 109
EP - 119
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
SN - 1811-9905
IS - 1
ER -
ID: 114351292