Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
In this paper, a set of optimal subspaces is specified for L-2 approximation of three classes of functions in the Sobolev spaces W-2((r)) defined on a segment and subject to certain boundary conditions. A subspaceXof a dimension not exceedingnis called optimal for a function class A if the best approximation of A by X is equal to the Kolmogorovn-width of A. These boundary conditions correspond to subspaces of periodically extended functions with symmetry properties. All approximating subspaces are generated by equidistant shifts of a single function. The conditions of optimality are given in terms of Fourier coefficients of a generating function. In particular, we indicate optimal spline spaces of all degrees d greater than or similar to r-1 with equidistant knots of several different types.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 270-281 |
Число страниц | 12 |
Журнал | Vestnik St. Petersburg University: Mathematics |
Том | 53 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - 1 июл 2020 |
ID: 72082167