Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Optimal discrimination designs for semiparametric models. / Мелас, Вячеслав Борисович; Гученко, Роман Александрович; Dette, Holger; Wong, Weng Kee.
в: Biometrika, Том 105, № 1, 03.2018, стр. 185-197.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Optimal discrimination designs for semiparametric models
AU - Мелас, Вячеслав Борисович
AU - Гученко, Роман Александрович
AU - Dette, Holger
AU - Wong, Weng Kee
N1 - Funding Information: We are grateful to the reviewers for their constructive comments on the first version of our paper. Dette and Guchenko were supported by the Deutsche Forschungsgemeinschaft. Dette and Wong were partially supported by the National Institute of General Medical Sciences of the U.S. National Institutes of Health. Melas and Guchenko were partially supported by St. Petersburg State University and the Russian Foundation for Basic Research.
PY - 2018/3
Y1 - 2018/3
N2 - Much work on optimal discrimination designs assumes that the models of interest are fully specified, apart from unknown parameters. Recent work allows errors in the models to be nonnormally distributed but still requires the specification of the mean structures.Otsu (2008) proposed optimal discriminating designs for semiparametric models by generalizing the Kullback-Leibler optimality criterion proposed byLópez-Fidalgo et al. (2007). This paper develops a relatively simple strategy for finding an optimal discrimination design. We also formulate equivalence theorems to confirm optimality of a design and derive relations between optimal designs found here for discriminating semiparametric models and those commonly used in optimal discrimination design problems.
AB - Much work on optimal discrimination designs assumes that the models of interest are fully specified, apart from unknown parameters. Recent work allows errors in the models to be nonnormally distributed but still requires the specification of the mean structures.Otsu (2008) proposed optimal discriminating designs for semiparametric models by generalizing the Kullback-Leibler optimality criterion proposed byLópez-Fidalgo et al. (2007). This paper develops a relatively simple strategy for finding an optimal discrimination design. We also formulate equivalence theorems to confirm optimality of a design and derive relations between optimal designs found here for discriminating semiparametric models and those commonly used in optimal discrimination design problems.
KW - Continuous design
KW - Equivalence theorem
KW - Kullback-Leibler divergence
KW - T-optimality
KW - Variational calculus
KW - PARAMETER-ESTIMATION
KW - REGRESSION-MODELS
KW - RIVAL MODELS
KW - CRITERION
UR - http://www.scopus.com/inward/record.url?scp=85043244627&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/optimal-discrimination-designs-semiparametric-models
U2 - 10.1093/biomet/asx058
DO - 10.1093/biomet/asx058
M3 - Article
VL - 105
SP - 185
EP - 197
JO - Biometrika
JF - Biometrika
SN - 0006-3444
IS - 1
ER -
ID: 35200489