Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Operator Lipschitz Functions in Several Variables and Möbius Transformations. / Александров, Алексей Борисович.
в: Journal of Mathematical Sciences (United States), Том 209, № 5, 01.09.2015, стр. 665-682.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Operator Lipschitz Functions in Several Variables and Möbius Transformations
AU - Александров, Алексей Борисович
N1 - Publisher Copyright: © 2015, Springer Science+Business Media New York.
PY - 2015/9/1
Y1 - 2015/9/1
N2 - It is proved that if f is an operator Lipschitz function defined on ℝn, then the function f∘φ/ǁφ′ǁ is also operator Lipschitz for every Möbius transformation φ with f(φ(∞)) = 0. Here ‖φ′‖ denotes the operator norm of the Jacobian matrix φ′ Similar statements for operator Lipschitz functions defined on closed subsets of ℝnare also obtained. Bibliography: 10 titles.
AB - It is proved that if f is an operator Lipschitz function defined on ℝn, then the function f∘φ/ǁφ′ǁ is also operator Lipschitz for every Möbius transformation φ with f(φ(∞)) = 0. Here ‖φ′‖ denotes the operator norm of the Jacobian matrix φ′ Similar statements for operator Lipschitz functions defined on closed subsets of ℝnare also obtained. Bibliography: 10 titles.
UR - http://www.scopus.com/inward/record.url?scp=84956794422&partnerID=8YFLogxK
U2 - 10.1007/s10958-015-2520-4
DO - 10.1007/s10958-015-2520-4
M3 - Article
AN - SCOPUS:84956794422
VL - 209
SP - 665
EP - 682
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 5
ER -
ID: 87317180