Standard

Operator Lipschitz Functions in Several Variables and Möbius Transformations. / Александров, Алексей Борисович.

в: Journal of Mathematical Sciences (United States), Том 209, № 5, 01.09.2015, стр. 665-682.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Александров, АБ 2015, 'Operator Lipschitz Functions in Several Variables and Möbius Transformations', Journal of Mathematical Sciences (United States), Том. 209, № 5, стр. 665-682. https://doi.org/10.1007/s10958-015-2520-4

APA

Vancouver

Author

Александров, Алексей Борисович. / Operator Lipschitz Functions in Several Variables and Möbius Transformations. в: Journal of Mathematical Sciences (United States). 2015 ; Том 209, № 5. стр. 665-682.

BibTeX

@article{ef9171bdb05649288b77e743b7f177b3,
title = "Operator Lipschitz Functions in Several Variables and M{\"o}bius Transformations",
abstract = "It is proved that if f is an operator Lipschitz function defined on ℝn, then the function f∘φ/ǁφ′ǁ is also operator Lipschitz for every M{\"o}bius transformation φ with f(φ(∞)) = 0. Here ‖φ′‖ denotes the operator norm of the Jacobian matrix φ′ Similar statements for operator Lipschitz functions defined on closed subsets of ℝnare also obtained. Bibliography: 10 titles.",
author = "Александров, {Алексей Борисович}",
note = "Publisher Copyright: {\textcopyright} 2015, Springer Science+Business Media New York.",
year = "2015",
month = sep,
day = "1",
doi = "10.1007/s10958-015-2520-4",
language = "English",
volume = "209",
pages = "665--682",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "5",

}

RIS

TY - JOUR

T1 - Operator Lipschitz Functions in Several Variables and Möbius Transformations

AU - Александров, Алексей Борисович

N1 - Publisher Copyright: © 2015, Springer Science+Business Media New York.

PY - 2015/9/1

Y1 - 2015/9/1

N2 - It is proved that if f is an operator Lipschitz function defined on ℝn, then the function f∘φ/ǁφ′ǁ is also operator Lipschitz for every Möbius transformation φ with f(φ(∞)) = 0. Here ‖φ′‖ denotes the operator norm of the Jacobian matrix φ′ Similar statements for operator Lipschitz functions defined on closed subsets of ℝnare also obtained. Bibliography: 10 titles.

AB - It is proved that if f is an operator Lipschitz function defined on ℝn, then the function f∘φ/ǁφ′ǁ is also operator Lipschitz for every Möbius transformation φ with f(φ(∞)) = 0. Here ‖φ′‖ denotes the operator norm of the Jacobian matrix φ′ Similar statements for operator Lipschitz functions defined on closed subsets of ℝnare also obtained. Bibliography: 10 titles.

UR - http://www.scopus.com/inward/record.url?scp=84956794422&partnerID=8YFLogxK

U2 - 10.1007/s10958-015-2520-4

DO - 10.1007/s10958-015-2520-4

M3 - Article

AN - SCOPUS:84956794422

VL - 209

SP - 665

EP - 682

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 5

ER -

ID: 87317180