DOI

The class of differential games with continuous updating is quite new, there it is assumed that at each time instant, players use information about the game structure (motion equations and payoff functions of players) defined on a closed time interval with a fixed duration. As time goes on, information about the game structure updates. A linear-quadratic case for this class of games is particularly important for practical problems arising in the engineering of human-machine interaction. In this paper, it is particularly interesting that the open-loop strategies are used to construct the optimal ones, but subsequently, we obtain strategies in the feedback form. Using these strategies the notions of Shapley value and Nash equilibrium as optimality principles for cooperative and non-cooperative cases respectively are defined and the optimal strategies for the linear-quadratic case are presented.

Язык оригиналаанглийский
Название основной публикацииMathematical Optimization Theory and Operations Research - 19th International Conference, MOTOR 2020, Proceedings
РедакторыAlexander Kononov, Michael Khachay, Valery A. Kalyagin, Panos Pardalos
ИздательSpringer Nature
Страницы212-230
Число страниц19
ISBN (печатное издание)9783030499877
DOI
СостояниеОпубликовано - 1 янв 2020
Событие19th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2020 - Novosibirsk, Российская Федерация
Продолжительность: 6 июл 202010 июл 2020

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том12095 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция19th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2020
Страна/TерриторияРоссийская Федерация
ГородNovosibirsk
Период6/07/2010/07/20

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 62445314