Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Considering the spectral Neumann problem for the Laplace operator on a doubly periodic square grid of thin circular cylinders (of diameter ε ≪ 1) with nodes, which are sets of unit size, we show that by changing or removing one or several semi-infinite chains of nodes we can form additional spectral segments, the wave passage bands, in the essential spectrum of the original grid. The corresponding waveguide processes are localized in a neighborhood of the said chains, forming I-shaped, V-shaped, and L-shaped open waveguides. To derive the result, we use the asymptotic analysis of the eigenvalues of model problems on various periodicity cells.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 943-956 |
Число страниц | 14 |
Журнал | Siberian Mathematical Journal |
Том | 57 |
Номер выпуска | 6 |
DOI | |
Состояние | Опубликовано - 1 ноя 2016 |
ID: 34905613