DOI

Considering the spectral Neumann problem for the Laplace operator on a doubly periodic square grid of thin circular cylinders (of diameter ε ≪ 1) with nodes, which are sets of unit size, we show that by changing or removing one or several semi-infinite chains of nodes we can form additional spectral segments, the wave passage bands, in the essential spectrum of the original grid. The corresponding waveguide processes are localized in a neighborhood of the said chains, forming I-shaped, V-shaped, and L-shaped open waveguides. To derive the result, we use the asymptotic analysis of the eigenvalues of model problems on various periodicity cells.

Язык оригиналаанглийский
Страницы (с-по)943-956
Число страниц14
ЖурналSiberian Mathematical Journal
Том57
Номер выпуска6
DOI
СостояниеОпубликовано - 1 ноя 2016

    Предметные области Scopus

  • Математика (все)

ID: 34905613