DOI

The problem of finding relevant data while searching the internet represents a big challenge for web users due to the enormous amounts of available information on the web. These difficulties are related to the well-known problem of information overload. In this work, we propose an online web assistant called OWNA. We developed a fully integrated framework for making recommendations in real-time based on web usage mining techniques. Our work starts with preparing raw data, then extracting useful information that helps build a knowledge base as well as assigns a specific weight for certain factors. The experiments show the advantages of the proposed model against alternative approaches.

Язык оригиналаанглийский
Страницы (с-по)116-131
Число страниц16
ЖурналVestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki
Том31
Номер выпуска1
DOI
СостояниеОпубликовано - 1 мар 2021

    Предметные области Scopus

  • Компьютерные науки (все)
  • Математика (все)
  • Гидродинамика и трансферные процессы

ID: 76923713