Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Abstract: In this paper we consider two-dimensional diffeomorphisms with hyperbolic fixed points and nontransverse homoclinic points. It is assumed that the tangency of a stable and unstable manifolds is not a tangency of finite order. It is shown that there exists a continuous one-parameter set of two-dimensional diffeomorphisms such that each diffeomorphism in a neighborhood of a homoclinic point has an infinite set of stable periodic points whose characteristic exponents are separated from zero.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 3543-3549 |
Число страниц | 7 |
Журнал | Lobachevskii Journal of Mathematics |
Том | 42 |
Номер выпуска | 14 |
DOI | |
Состояние | Опубликовано - фев 2022 |
ID: 95511604