Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
One-nonterminal conjunctive grammars over a unary alphabet. / Jez, Artur; Okhotin, Alexander.
Computer Science - Theory and Applications - 4th International Computer Science Symposium in Russia, CSR 2009, Proceedings. 2009. стр. 191-202 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Том 5675 LNCS).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
}
TY - GEN
T1 - One-nonterminal conjunctive grammars over a unary alphabet
AU - Jez, Artur
AU - Okhotin, Alexander
PY - 2009
Y1 - 2009
N2 - Conjunctive grammars over an alphabet ∑ = {a} are studied, with the focus on the special case with a unique nonterminal symbol. Such a grammar is equivalent to an equation X = φ(X) over sets of natural numbers, using union, intersection and addition. It is shown that every grammar with multiple nonterminals can be encoded into a grammar with a single nonterminal, with a slight modification of the language. Based on this construction, the compressed membership problem for one-nonterminal conjunctive grammars over {a} is proved to be EXPTIME-complete, while the equivalence, finiteness and emptiness problems for these grammars are shown to be undecidable.
AB - Conjunctive grammars over an alphabet ∑ = {a} are studied, with the focus on the special case with a unique nonterminal symbol. Such a grammar is equivalent to an equation X = φ(X) over sets of natural numbers, using union, intersection and addition. It is shown that every grammar with multiple nonterminals can be encoded into a grammar with a single nonterminal, with a slight modification of the language. Based on this construction, the compressed membership problem for one-nonterminal conjunctive grammars over {a} is proved to be EXPTIME-complete, while the equivalence, finiteness and emptiness problems for these grammars are shown to be undecidable.
UR - http://www.scopus.com/inward/record.url?scp=70350303842&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-03351-3_19
DO - 10.1007/978-3-642-03351-3_19
M3 - Conference contribution
AN - SCOPUS:70350303842
SN - 3642033504
SN - 9783642033506
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 191
EP - 202
BT - Computer Science - Theory and Applications - 4th International Computer Science Symposium in Russia, CSR 2009, Proceedings
T2 - 4th International Computer Science Symposium in Russia, CSR 2009
Y2 - 18 August 2009 through 23 August 2009
ER -
ID: 78935797