DOI

It was shown by M. I. Zelikin (2007) that the spectrum of a nuclear
operator in a Hilbert space is central-symmetric i the traces of all odd powers
of the operator equal zero. B. Mityagin (2016) generalized Zelikin's criterium
to the case of compact operators (in Banach spaces) some of which powers are
nuclear, considering even a notion of so-called Zd-symmetry of spectra introduced
by him. We study α-nuclear operators generated by the tensor elements of socalled α-projective tensor products of Banach spaces, introduced in the paper (α
is a quasi-norm). We give exact generalizations of Zelikin's theorem to the cases
of Zd-symmetry of spectra of α-nuclear operators (in particular, for s-nuclear and
for (r, p)-nuclear operators). We show that the results are optimal.
Язык оригиналаанглийский
Название основной публикацииAnalysis as a Tool in Mathematical Physics
Подзаголовок основной публикацииIn Memory of Boris Pavlov
Редакторы P.Kurasov, A.Laptev, S.Naboko, B.Simon
Место публикацииBirkhäuser, Cham
ИздательSpringer Nature
Страницы554-569
Число страниц16
ISBN (электронное издание)9783030315313
ISBN (печатное издание)97830303155306
DOI
СостояниеОпубликовано - 1 июл 2020
СобытиеSpectral Theory and Applications: Special session at 27-th Nordic Congress of Mathematicians - Department of Mathematics, Stockholm University, Stockholm, Швеция
Продолжительность: 13 мар 201615 мар 2016
http://staff.math.su.se/kurasov/SpectralTheory2016/index.html

Серия публикаций

НазваниеOperator Theory: Advances and Applications
Том276
ISSN (печатное издание)0255-0156
ISSN (электронное издание)2296-4878

конференция

конференцияSpectral Theory and Applications
Страна/TерриторияШвеция
ГородStockholm
Период13/03/1615/03/16
Сайт в сети Internet

    Предметные области Scopus

  • Математическая физика

ID: 44029435