Standard

On wavelet decomposition of spaces of first order splines. / Makarov, A. A.

в: Journal of Mathematical Sciences, Том 156, № 4, 01.2009, стр. 617-631.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Makarov, AA 2009, 'On wavelet decomposition of spaces of first order splines', Journal of Mathematical Sciences, Том. 156, № 4, стр. 617-631. https://doi.org/10.1007/s10958-009-9278-5

APA

Vancouver

Author

Makarov, A. A. / On wavelet decomposition of spaces of first order splines. в: Journal of Mathematical Sciences. 2009 ; Том 156, № 4. стр. 617-631.

BibTeX

@article{012c4ab262674b0ba18fca39bcacc5f0,
title = "On wavelet decomposition of spaces of first order splines",
abstract = "We consider approximate relations in the form of a system of linear algebraic equations that yield B φ -splines. We construct Lagrange type splines of the first order and give examples of polynomial, trigonometric, hyperbolic, and exponential B φ -splines. We also construct a system of linear functionals biorthogonal to the B φ -splines and resolve an interpolation problem generated by this system. For refined nonuniform grids we establish an embedding of spaces of B φ -splines. The decomposition and reconstruction formulas are obtained. Bibliography: 20 titles.",
author = "Makarov, {A. A.}",
year = "2009",
month = jan,
doi = "10.1007/s10958-009-9278-5",
language = "English",
volume = "156",
pages = "617--631",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - On wavelet decomposition of spaces of first order splines

AU - Makarov, A. A.

PY - 2009/1

Y1 - 2009/1

N2 - We consider approximate relations in the form of a system of linear algebraic equations that yield B φ -splines. We construct Lagrange type splines of the first order and give examples of polynomial, trigonometric, hyperbolic, and exponential B φ -splines. We also construct a system of linear functionals biorthogonal to the B φ -splines and resolve an interpolation problem generated by this system. For refined nonuniform grids we establish an embedding of spaces of B φ -splines. The decomposition and reconstruction formulas are obtained. Bibliography: 20 titles.

AB - We consider approximate relations in the form of a system of linear algebraic equations that yield B φ -splines. We construct Lagrange type splines of the first order and give examples of polynomial, trigonometric, hyperbolic, and exponential B φ -splines. We also construct a system of linear functionals biorthogonal to the B φ -splines and resolve an interpolation problem generated by this system. For refined nonuniform grids we establish an embedding of spaces of B φ -splines. The decomposition and reconstruction formulas are obtained. Bibliography: 20 titles.

UR - http://www.scopus.com/inward/record.url?scp=59849105939&partnerID=8YFLogxK

U2 - 10.1007/s10958-009-9278-5

DO - 10.1007/s10958-009-9278-5

M3 - Article

AN - SCOPUS:59849105939

VL - 156

SP - 617

EP - 631

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 13741809