Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We argue that the very effective cover of hermitian K-theory in the sense of motivic homotopy theory is a convenient algebro-geometric generalization of the connective real topological K-theory spectrum. This means the very effective cover acquires the correct Betti realization, its motivic cohomology has the desired structure as a module over the motivic Steenrod algebra, and that its motivic Adams and slice spectral sequences are amenable to calculations.
Язык оригинала | английский |
---|---|
Журнал | Mathematische Zeitschrift |
DOI | |
Состояние | Электронная публикация перед печатью - 29 апр 2019 |
ID: 42385259