DOI

We show that any nondeterministic read-once branching program that decides a satisfiable Tseitin formula based on an n× n grid graph has size at least 2Ω(n). Then using the Excluded Grid Theorem by Robertson and Seymour we show that for arbitrary graph G(V, E) any nondeterministic read-once branching program that computes a satisfiable Tseitin formula based on G has size at least (formula presented) for all (formula presented)1/36, where tw (G) is the treewidth of G (for planar graphs and some other classes of graphs the statement holds for δ= 1). We also show an upper bound of (formula presented), where pw (G) is the pathwidth of G. We apply the mentioned results to the analysis of the complexity of derivations in the proof system OBDD (∧, reordering) and show that any OBDD (∧, reordering) -refutation of an unsatisfiable Tseitin formula based on a graph G has size at least (formula presented).

Язык оригиналаанглийский
Название основной публикацииComputer Science – Theory and Applications - 14th International Computer Science Symposium in Russia, CSR 2019, Proceedings
РедакторыRené van Bevern, Gregory Kucherov
ИздательSpringer Nature
Страницы143-155
Число страниц13
ISBN (печатное издание)9783030199548
DOI
СостояниеОпубликовано - 1 янв 2019
Событие14th International Computer Science Symposium in Russia, CSR 2019 - Novosibirsk, Российская Федерация
Продолжительность: 1 июл 20195 июл 2019

Серия публикаций

НазваниеLecture Notes in Computer Science
ИздательSPRINGER INTERNATIONAL PUBLISHING AG
Том11532
ISSN (печатное издание)0302-9743

конференция

конференция14th International Computer Science Symposium in Russia, CSR 2019
Страна/TерриторияРоссийская Федерация
ГородNovosibirsk
Период1/07/195/07/19

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 49785149