Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
On the Exponential Ranking and Its Linear Counterpart. / Gromov, Dmitry; Evmenova, Elizaveta.
Complex Networks and Their Applications X : Proceedings of the 10th International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2021. ред. / Rosa Maria Benito; Chantal Cherifi; Hocine Cherifi; Esteban Moro; Luis M. Rocha; Marta Sales-Pardo. Том 1 Springer Nature, 2022. стр. 260-270 (Studies in Computational Intelligence; Том 1015).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - On the Exponential Ranking and Its Linear Counterpart
AU - Gromov, Dmitry
AU - Evmenova, Elizaveta
N1 - Gromov D., Evmenova E. (2022) On the Exponential Ranking and Its Linear Counterpart. In: Benito R.M., Cherifi C., Cherifi H., Moro E., Rocha L.M., Sales-Pardo M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1015. Springer, Cham. https://proxy.library.spbu.ru:2060/10.1007/978-3-030-93409-5_22
PY - 2022
Y1 - 2022
N2 - This paper deals with ranking algorithms for signed graphs. We analyze the algebraic properties of the exponential ranking algorithm and suggest an alternative ranking scheme that is close to the exponential ranking in several respects, but which also enjoys the property of being linear. We discuss the properties of the introduced scheme and present both algebraic and numerical evidence that it is indeed very close to the exponential ranking.
AB - This paper deals with ranking algorithms for signed graphs. We analyze the algebraic properties of the exponential ranking algorithm and suggest an alternative ranking scheme that is close to the exponential ranking in several respects, but which also enjoys the property of being linear. We discuss the properties of the introduced scheme and present both algebraic and numerical evidence that it is indeed very close to the exponential ranking.
KW - Exponential ranking
KW - Kendall’s tau
KW - Rank correlation
KW - Ranking
KW - Signed networks
UR - http://www.scopus.com/inward/record.url?scp=85122497247&partnerID=8YFLogxK
UR - https://proxy.library.spbu.ru:2096/chapter/10.1007/978-3-030-93409-5_22
UR - https://www.mendeley.com/catalogue/309ab206-83b9-3541-bd3a-f97e18337ea1/
U2 - 10.1007/978-3-030-93409-5_22
DO - 10.1007/978-3-030-93409-5_22
M3 - Conference contribution
AN - SCOPUS:85122497247
SN - 9783030934088
VL - 1
T3 - Studies in Computational Intelligence
SP - 260
EP - 270
BT - Complex Networks and Their Applications X
A2 - Benito, Rosa Maria
A2 - Cherifi, Chantal
A2 - Cherifi, Hocine
A2 - Moro, Esteban
A2 - Rocha, Luis M.
A2 - Sales-Pardo, Marta
PB - Springer Nature
T2 - 10th International Conference on Complex Networks and Their Applications, COMPLEX NETWORKS 2021
Y2 - 30 November 2021 through 2 December 2021
ER -
ID: 91850645