Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We provide a cohomological interpretation of the zeroth stable A 1-homotopy group of a smooth curve over an infinite perfect field. We show that this group is isomorphic to the first Nisnevich (or Zariski) cohomology group of a certain sheaf closely related to the first Milnor–Witt K-theory sheaf. This cohomology group can be computed using an explicit Gersten-type complex. We show that if the base field is algebraically closed then the zeroth stable A 1-homotopy group of a smooth curve coincides with the zeroth Suslin homology group that was identified by Suslin and Voevodsky with a relative Picard group. As a consequence we reobtain a version of Suslin's rigidity theorem.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 3195-3218 |
Число страниц | 24 |
Журнал | Journal of Pure and Applied Algebra |
Том | 222 |
Номер выпуска | 10 |
DOI | |
Состояние | Опубликовано - окт 2018 |
ID: 36094678