Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On the word length of commutators in GLn(R). / Sivatski, A. S.; Stepanov, A. V.
в: K-Theory, Том 17, № 4, 01.01.1999, стр. 295-302.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On the word length of commutators in GLn(R)
AU - Sivatski, A. S.
AU - Stepanov, A. V.
PY - 1999/1/1
Y1 - 1999/1/1
N2 - Van der Kallen proved that the elementary group En(C[x]) does not have bounded word length with respect to the set of all elementary transvections. Later, Dennis and Vaserstein showed that the same is true, even with respect to the set of all commutators. The natural question is: Does the set of all commutators in En,(R) have bounded word length with all elementary transvections as generators? The article provides a positive answer over a finite-dimensional commutative ring R.
AB - Van der Kallen proved that the elementary group En(C[x]) does not have bounded word length with respect to the set of all elementary transvections. Later, Dennis and Vaserstein showed that the same is true, even with respect to the set of all commutators. The natural question is: Does the set of all commutators in En,(R) have bounded word length with all elementary transvections as generators? The article provides a positive answer over a finite-dimensional commutative ring R.
KW - Dimension of maximal spectrum of a ring
KW - Elementary subgroup
KW - General linear group
KW - Word length
UR - http://www.scopus.com/inward/record.url?scp=0013252019&partnerID=8YFLogxK
U2 - 10.1023/A:1007730801851
DO - 10.1023/A:1007730801851
M3 - Article
AN - SCOPUS:0013252019
VL - 17
SP - 295
EP - 302
JO - K-Theory
JF - K-Theory
SN - 0920-3036
IS - 4
ER -
ID: 49794212