Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
On the transformation of ll(k)-linear grammars to ll(1)-linear. / Okhotin, Alexander; Olkhovsky, Ilya.
Computer Science – Theory and Applications - 15th International Computer Science Symposium in Russia, CSR 2020, Proceedings. ред. / Henning Fernau. Springer Nature, 2020. стр. 328-340 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Том 12159 LNCS).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - On the transformation of ll(k)-linear grammars to ll(1)-linear
AU - Okhotin, Alexander
AU - Olkhovsky, Ilya
PY - 2020/6/1
Y1 - 2020/6/1
N2 - It is proved that every LL(k)-linear grammar can be transformed to an equivalent LL(1)-linear grammar. The transformation incurs a blow-up in the number of nonterminal symbols by a factor of (formula presented), where m is the size of the alphabet. A close lower bound is established: for certain LL(k)-linear grammars with n nonterminal symbols, every equivalent LL(1)-linear grammar must have at least (formula presented) nonterminal symbols.
AB - It is proved that every LL(k)-linear grammar can be transformed to an equivalent LL(1)-linear grammar. The transformation incurs a blow-up in the number of nonterminal symbols by a factor of (formula presented), where m is the size of the alphabet. A close lower bound is established: for certain LL(k)-linear grammars with n nonterminal symbols, every equivalent LL(1)-linear grammar must have at least (formula presented) nonterminal symbols.
UR - http://www.scopus.com/inward/record.url?scp=85087273061&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/97cf2206-3000-304f-af3e-848913f9cc97/
U2 - 10.1007/978-3-030-50026-9_24
DO - 10.1007/978-3-030-50026-9_24
M3 - Conference contribution
AN - SCOPUS:85087273061
SN - 9783030500252
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 328
EP - 340
BT - Computer Science – Theory and Applications - 15th International Computer Science Symposium in Russia, CSR 2020, Proceedings
A2 - Fernau, Henning
PB - Springer Nature
T2 - 15th International Computer Science Symposium in Russia, CSR 2020
Y2 - 29 June 2020 through 3 July 2020
ER -
ID: 61323684