Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
It is proved that the set of scattered substrings of a language recognized by an n-state DFA requires a DFA with at least 2{n/2-2} states (the known upper bound is 2n), with witness languages given over an exponentially growing alphabet. For a 3-letter alphabet, scattered substrings are shown to require at least 2{sqrt{2n+30}-6} states. A similar state complexity function for scattered superstrings is determined to be exactly 2{n-2} + 1 for an alphabet of at least n-2 letters, and strictly less for any smaller alphabet. For a 3-letter alphabet, the state complexity of scattered superstrings is at least 1/5 4sqrt{n/2}n-3/4.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 325-338 |
Число страниц | 14 |
Журнал | Fundamenta Informaticae |
Том | 99 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - 2 июл 2010 |
Опубликовано для внешнего пользования | Да |
ID: 41142137