DOI

The paper is devoted to a generalization of the Myshkis's 3/2 stability theorem. This theorem gives an exact stability boundary for a scalar equation with a real parameter and an arbitrary delay, which is bounded by a prescribed value. In our paper, we consider the equation with complex parameter that opens up a direct opportunity for the analysis of systems of several equations. Via the Razumikhin approach, a stability region (not necessarily exact) is obtained, it is shown that its boundary can be expressed in radicals, and in the limit case the result coincides with the one of Myshkis.

Язык оригиналаанглийский
Страницы (с-по)85-90
Число страниц6
ЖурналIFAC-PapersOnLine
Том52
Номер выпуска18
DOI
СостояниеОпубликовано - сен 2019
Событие15th IFAC Workshop on Time Delay Systems (TDS) jointly held with the 7th IFAC Symposium on System Structure and Control (SSSC) - Sinaia, Румыния
Продолжительность: 9 сен 201911 сен 2019

    Предметные области Scopus

  • Системотехника

ID: 53452034