Результаты исследований: Научные публикации в периодических изданиях › статья в журнале по материалам конференции › Рецензирование
The paper is devoted to a generalization of the Myshkis's 3/2 stability theorem. This theorem gives an exact stability boundary for a scalar equation with a real parameter and an arbitrary delay, which is bounded by a prescribed value. In our paper, we consider the equation with complex parameter that opens up a direct opportunity for the analysis of systems of several equations. Via the Razumikhin approach, a stability region (not necessarily exact) is obtained, it is shown that its boundary can be expressed in radicals, and in the limit case the result coincides with the one of Myshkis.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 85-90 |
Число страниц | 6 |
Журнал | IFAC-PapersOnLine |
Том | 52 |
Номер выпуска | 18 |
DOI | |
Состояние | Опубликовано - сен 2019 |
Событие | 15th IFAC Workshop on Time Delay Systems (TDS) jointly held with the 7th IFAC Symposium on System Structure and Control (SSSC) - Sinaia, Румыния Продолжительность: 9 сен 2019 → 11 сен 2019 |
ID: 53452034