DOI

Consider the sequence of algebraic integers un given by the starting values u0 = 0, u1 = 1 and the recurrence un + 1= (4 cos2(2 π/ 7) − 1) un−un 1. We prove that for any n ∉ {1, 2, 3, 5, 8, 12, 18, 28, 30} the n-th term of the sequence has a primitive divisor in Z[2cos(2π/7)]. As a consequence we deduce that for any suffciently large n there exists a prime power q such that the group PSL2(q) can be generated by a pair x, y with x2= y3= (xy) 7= 1 and the order of the commutator [x, y] is exactly n. The latter result answers in affrmative a question of Holt and Plesken.

Язык оригиналаанглийский
Страницы (с-по)2101-2110
Число страниц10
ЖурналScience China Mathematics
Том61
Номер выпуска11
DOI
СостояниеОпубликовано - 1 ноя 2018

    Предметные области Scopus

  • Математика (все)

ID: 36947097