DOI

The paper explores the possibility of forecasting such dangerous meteorological phenomena as a thunderstorm by applying five types of neural network to the output data of a hydrodynamic model that simulates dynamic and microphysical processes in convective clouds. The ideas and the result delivered in [1] are developed and supplemented by the classification error calculations and by consideration of radial basic and probabilistic neural networks. The results show that forecast accuracy of all five networks reaches values of 90%. However, the radial basis function has the advantages of the highest accuracy along with the smallest classification error. Its simple structure and short training time make this type of neuralnetwork the best one in view of accuracy versus productivity relation.
Язык оригиналаанглийский
Название основной публикацииComputational Science and Its Applications – ICCSA 2021
Подзаголовок основной публикации21st International Conference, Cagliari, Italy, September 13–16, 2021, Proceedings, Part VIII
РедакторыOsvaldo Gervasi, Beniamino Murgante, Sanjay Misra, Chiara Garau, Ivan Blečić, David Taniar, Bernady O. Apduhan, Ana Maria Rocha, Eufemia Tarantino, Carmelo Maria Torre
ИздательSpringer Nature
Страницы350-359
Число страниц10
ISBN (электронное издание)978-3-030-87010-2
ISBN (печатное издание)978-3-030-87009-6
DOI
СостояниеОпубликовано - 2021
СобытиеInternational Conference on Computational Science and Its Applications - Кальяри, Италия
Продолжительность: 13 сен 202116 сен 2021
Номер конференции: 21

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том12956 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференцияInternational Conference on Computational Science and Its Applications
Сокращенное названиеICCSA
Страна/TерриторияИталия
ГородКальяри
Период13/09/2116/09/21

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 85858008