Standard

On the Pólya conjecture for the Neumann problem in planar convex domains. / Filonov, N.

в: Communications on Pure and Applied Mathematics, 10.10.2024.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Filonov, N. / On the Pólya conjecture for the Neumann problem in planar convex domains. в: Communications on Pure and Applied Mathematics. 2024.

BibTeX

@article{9c4edcdc010e4a63b5bbb6d4a8541e2f,
title = "On the P{\'o}lya conjecture for the Neumann problem in planar convex domains",
abstract = "Denote by (Formula presented.) the counting function of the spectrum of the Neumann problem in the domain (Formula presented.) on the plane. G. P{\'o}lya conjectured that (Formula presented.). We prove that for convex domains (Formula presented.). Here (Formula presented.) is the first zero of the Bessel function (Formula presented.). {\textcopyright} 2024 Wiley Periodicals LLC.",
author = "N. Filonov",
note = "Export Date: 21 October 2024 Адрес для корреспонденции: Filonov, N.; St. Petersburg Department of Steklov Institute of Mathematics, 27 Fontanka, Russian Federation; эл. почта: filonov@pdmi.ras.ru Сведения о финансировании: Russian Science Foundation, RSF, 22‐11‐00092 Текст о финансировании 1: The work is supported by the grant of Russian Science Foundation No. 22\u201011\u201000092.",
year = "2024",
month = oct,
day = "10",
doi = "10.1002/cpa.22231",
language = "Английский",
journal = "Communications on Pure and Applied Mathematics",
issn = "0010-3640",
publisher = "Wiley-Blackwell",

}

RIS

TY - JOUR

T1 - On the Pólya conjecture for the Neumann problem in planar convex domains

AU - Filonov, N.

N1 - Export Date: 21 October 2024 Адрес для корреспонденции: Filonov, N.; St. Petersburg Department of Steklov Institute of Mathematics, 27 Fontanka, Russian Federation; эл. почта: filonov@pdmi.ras.ru Сведения о финансировании: Russian Science Foundation, RSF, 22‐11‐00092 Текст о финансировании 1: The work is supported by the grant of Russian Science Foundation No. 22\u201011\u201000092.

PY - 2024/10/10

Y1 - 2024/10/10

N2 - Denote by (Formula presented.) the counting function of the spectrum of the Neumann problem in the domain (Formula presented.) on the plane. G. Pólya conjectured that (Formula presented.). We prove that for convex domains (Formula presented.). Here (Formula presented.) is the first zero of the Bessel function (Formula presented.). © 2024 Wiley Periodicals LLC.

AB - Denote by (Formula presented.) the counting function of the spectrum of the Neumann problem in the domain (Formula presented.) on the plane. G. Pólya conjectured that (Formula presented.). We prove that for convex domains (Formula presented.). Here (Formula presented.) is the first zero of the Bessel function (Formula presented.). © 2024 Wiley Periodicals LLC.

U2 - 10.1002/cpa.22231

DO - 10.1002/cpa.22231

M3 - статья

JO - Communications on Pure and Applied Mathematics

JF - Communications on Pure and Applied Mathematics

SN - 0010-3640

ER -

ID: 126221763