Standard

On the maximal value of the expectation of record numbers. / Nevzorov, V.B.; Tovmasyan, S.A.

в: Vestnik St. Petersburg University: Mathematics, № 2, 2014, стр. 64-67.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Nevzorov, VB & Tovmasyan, SA 2014, 'On the maximal value of the expectation of record numbers', Vestnik St. Petersburg University: Mathematics, № 2, стр. 64-67. https://doi.org/10.3103/S1063454114020046

APA

Nevzorov, V. B., & Tovmasyan, S. A. (2014). On the maximal value of the expectation of record numbers. Vestnik St. Petersburg University: Mathematics, (2), 64-67. https://doi.org/10.3103/S1063454114020046

Vancouver

Nevzorov VB, Tovmasyan SA. On the maximal value of the expectation of record numbers. Vestnik St. Petersburg University: Mathematics. 2014;(2):64-67. https://doi.org/10.3103/S1063454114020046

Author

Nevzorov, V.B. ; Tovmasyan, S.A. / On the maximal value of the expectation of record numbers. в: Vestnik St. Petersburg University: Mathematics. 2014 ; № 2. стр. 64-67.

BibTeX

@article{0c2ffead0853469eb8eaad8aa07512dc,
title = "On the maximal value of the expectation of record numbers",
abstract = "{\textcopyright} Allerton Press, Inc., 2014. There are n independent identically distributed random variables with a continuous distribution function. The problem considered is, getting sequentially the values of these variables and selecting one of them as an initial point, how we can maximize the expected number of records among the rest of this sequence of random variables (without knowledge of the future values).",
author = "V.B. Nevzorov and S.A. Tovmasyan",
year = "2014",
doi = "10.3103/S1063454114020046",
language = "English",
pages = "64--67",
journal = "Vestnik St. Petersburg University: Mathematics",
issn = "1063-4541",
publisher = "Pleiades Publishing",
number = "2",

}

RIS

TY - JOUR

T1 - On the maximal value of the expectation of record numbers

AU - Nevzorov, V.B.

AU - Tovmasyan, S.A.

PY - 2014

Y1 - 2014

N2 - © Allerton Press, Inc., 2014. There are n independent identically distributed random variables with a continuous distribution function. The problem considered is, getting sequentially the values of these variables and selecting one of them as an initial point, how we can maximize the expected number of records among the rest of this sequence of random variables (without knowledge of the future values).

AB - © Allerton Press, Inc., 2014. There are n independent identically distributed random variables with a continuous distribution function. The problem considered is, getting sequentially the values of these variables and selecting one of them as an initial point, how we can maximize the expected number of records among the rest of this sequence of random variables (without knowledge of the future values).

U2 - 10.3103/S1063454114020046

DO - 10.3103/S1063454114020046

M3 - Article

SP - 64

EP - 67

JO - Vestnik St. Petersburg University: Mathematics

JF - Vestnik St. Petersburg University: Mathematics

SN - 1063-4541

IS - 2

ER -

ID: 7063609