Standard

On the homology of mapping spaces. / Podkorytov, Semën S.

в: Central European Journal of Mathematics, Том 9, № 6, 01.12.2011, стр. 1232-1241.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Podkorytov, SS 2011, 'On the homology of mapping spaces', Central European Journal of Mathematics, Том. 9, № 6, стр. 1232-1241. https://doi.org/10.2478/s11533-011-0084-1

APA

Podkorytov, S. S. (2011). On the homology of mapping spaces. Central European Journal of Mathematics, 9(6), 1232-1241. https://doi.org/10.2478/s11533-011-0084-1

Vancouver

Podkorytov SS. On the homology of mapping spaces. Central European Journal of Mathematics. 2011 Дек. 1;9(6):1232-1241. https://doi.org/10.2478/s11533-011-0084-1

Author

Podkorytov, Semën S. / On the homology of mapping spaces. в: Central European Journal of Mathematics. 2011 ; Том 9, № 6. стр. 1232-1241.

BibTeX

@article{ef44b4c8f2454f778d9cd5d9a3d44465,
title = "On the homology of mapping spaces",
abstract = "Following a Bendersky-Gitler idea, we construct an isomorphism between Anderson's and Arone's complexes modelling the chain complex of a mapping space. This allows us to apply Shipley's convergence theorem to Arone's model. As a corollary, we reduce the problem of homotopy equivalence for certain {"}toy{"} spaces to a problem in homological algebra.",
keywords = "Anderson spectral sequence, Arone spectral sequence, Vassiliev spectral sequence",
author = "Podkorytov, {Sem{\"e}n S.}",
year = "2011",
month = dec,
day = "1",
doi = "10.2478/s11533-011-0084-1",
language = "English",
volume = "9",
pages = "1232--1241",
journal = "Open Mathematics",
issn = "1895-1074",
publisher = "Versita",
number = "6",

}

RIS

TY - JOUR

T1 - On the homology of mapping spaces

AU - Podkorytov, Semën S.

PY - 2011/12/1

Y1 - 2011/12/1

N2 - Following a Bendersky-Gitler idea, we construct an isomorphism between Anderson's and Arone's complexes modelling the chain complex of a mapping space. This allows us to apply Shipley's convergence theorem to Arone's model. As a corollary, we reduce the problem of homotopy equivalence for certain "toy" spaces to a problem in homological algebra.

AB - Following a Bendersky-Gitler idea, we construct an isomorphism between Anderson's and Arone's complexes modelling the chain complex of a mapping space. This allows us to apply Shipley's convergence theorem to Arone's model. As a corollary, we reduce the problem of homotopy equivalence for certain "toy" spaces to a problem in homological algebra.

KW - Anderson spectral sequence

KW - Arone spectral sequence

KW - Vassiliev spectral sequence

UR - http://www.scopus.com/inward/record.url?scp=80053104339&partnerID=8YFLogxK

U2 - 10.2478/s11533-011-0084-1

DO - 10.2478/s11533-011-0084-1

M3 - Article

AN - SCOPUS:80053104339

VL - 9

SP - 1232

EP - 1241

JO - Open Mathematics

JF - Open Mathematics

SN - 1895-1074

IS - 6

ER -

ID: 49886346