Standard

On the geometrical characteristics of chaotic dynamics, I. / Preston, Serge; Kunin, I.; Gliklikh, Y. E.; Chernykh, G.

в: International Journal of Engineering Science, Том 41, № 3-5, 01.03.2003, стр. 495-506.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Preston, S, Kunin, I, Gliklikh, YE & Chernykh, G 2003, 'On the geometrical characteristics of chaotic dynamics, I', International Journal of Engineering Science, Том. 41, № 3-5, стр. 495-506. https://doi.org/10.1016/S0020-7225(02)00212-4

APA

Preston, S., Kunin, I., Gliklikh, Y. E., & Chernykh, G. (2003). On the geometrical characteristics of chaotic dynamics, I. International Journal of Engineering Science, 41(3-5), 495-506. https://doi.org/10.1016/S0020-7225(02)00212-4

Vancouver

Preston S, Kunin I, Gliklikh YE, Chernykh G. On the geometrical characteristics of chaotic dynamics, I. International Journal of Engineering Science. 2003 Март 1;41(3-5):495-506. https://doi.org/10.1016/S0020-7225(02)00212-4

Author

Preston, Serge ; Kunin, I. ; Gliklikh, Y. E. ; Chernykh, G. / On the geometrical characteristics of chaotic dynamics, I. в: International Journal of Engineering Science. 2003 ; Том 41, № 3-5. стр. 495-506.

BibTeX

@article{a4eaa8cbb6fd4794a9b70ed06e067bed,
title = "On the geometrical characteristics of chaotic dynamics, I",
abstract = "The geometrical characteristics of chaotic dynamics were presented. It was found that these structures carry important information about the properties of dynamical system: all curvatures of trajectories, Lyapunov exponents etc. The numerical calculations of curvatures of eigenvalues of these tensors along trajectories of Lorentz system displayed sharp change of behavior near the points where trajectories leave the fractal surface of attractor.",
keywords = "Affine connection, Chaotic dynamics, Curvature, Frenet frame",
author = "Serge Preston and I. Kunin and Gliklikh, {Y. E.} and G. Chernykh",
year = "2003",
month = mar,
day = "1",
doi = "10.1016/S0020-7225(02)00212-4",
language = "English",
volume = "41",
pages = "495--506",
journal = "International Journal of Engineering Science",
issn = "0020-7225",
publisher = "Elsevier",
number = "3-5",

}

RIS

TY - JOUR

T1 - On the geometrical characteristics of chaotic dynamics, I

AU - Preston, Serge

AU - Kunin, I.

AU - Gliklikh, Y. E.

AU - Chernykh, G.

PY - 2003/3/1

Y1 - 2003/3/1

N2 - The geometrical characteristics of chaotic dynamics were presented. It was found that these structures carry important information about the properties of dynamical system: all curvatures of trajectories, Lyapunov exponents etc. The numerical calculations of curvatures of eigenvalues of these tensors along trajectories of Lorentz system displayed sharp change of behavior near the points where trajectories leave the fractal surface of attractor.

AB - The geometrical characteristics of chaotic dynamics were presented. It was found that these structures carry important information about the properties of dynamical system: all curvatures of trajectories, Lyapunov exponents etc. The numerical calculations of curvatures of eigenvalues of these tensors along trajectories of Lorentz system displayed sharp change of behavior near the points where trajectories leave the fractal surface of attractor.

KW - Affine connection

KW - Chaotic dynamics

KW - Curvature

KW - Frenet frame

UR - http://www.scopus.com/inward/record.url?scp=0037335468&partnerID=8YFLogxK

U2 - 10.1016/S0020-7225(02)00212-4

DO - 10.1016/S0020-7225(02)00212-4

M3 - Article

AN - SCOPUS:0037335468

VL - 41

SP - 495

EP - 506

JO - International Journal of Engineering Science

JF - International Journal of Engineering Science

SN - 0020-7225

IS - 3-5

ER -

ID: 48654734