Standard

On the existence of solutions of a boundary problem for the catalytic reaction model. / Markov, Yu G.; Osmolovskij, V. G.

в: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, № 1, 01.01.1998, стр. 23-28.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Markov, YG & Osmolovskij, VG 1998, 'On the existence of solutions of a boundary problem for the catalytic reaction model', Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, № 1, стр. 23-28.

APA

Markov, Y. G., & Osmolovskij, V. G. (1998). On the existence of solutions of a boundary problem for the catalytic reaction model. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, (1), 23-28.

Vancouver

Markov YG, Osmolovskij VG. On the existence of solutions of a boundary problem for the catalytic reaction model. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 1998 Янв. 1;(1):23-28.

Author

Markov, Yu G. ; Osmolovskij, V. G. / On the existence of solutions of a boundary problem for the catalytic reaction model. в: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 1998 ; № 1. стр. 23-28.

BibTeX

@article{60929803e2a447c1b065a2aa304549d6,
title = "On the existence of solutions of a boundary problem for the catalytic reaction model",
abstract = "The initial boundary problem is formulated for the model of catalytic bimolecular reactions limited by the lateral interactions of reactants and the surface diffusion of reactants to the reaction centers. The model of catalytic bimolecular reactions is based on the generalized kinetic BET model (GK BET model). It is shown that the problem is solved within the class of infinitely differentiable functions. The obtained results are the basis for finding the precise solutions and the numerical simulation.",
author = "Markov, {Yu G.} and Osmolovskij, {V. G.}",
year = "1998",
month = jan,
day = "1",
language = "русский",
pages = "23--28",
journal = "ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ",
issn = "1025-3106",
publisher = "Издательство Санкт-Петербургского университета",
number = "1",

}

RIS

TY - JOUR

T1 - On the existence of solutions of a boundary problem for the catalytic reaction model

AU - Markov, Yu G.

AU - Osmolovskij, V. G.

PY - 1998/1/1

Y1 - 1998/1/1

N2 - The initial boundary problem is formulated for the model of catalytic bimolecular reactions limited by the lateral interactions of reactants and the surface diffusion of reactants to the reaction centers. The model of catalytic bimolecular reactions is based on the generalized kinetic BET model (GK BET model). It is shown that the problem is solved within the class of infinitely differentiable functions. The obtained results are the basis for finding the precise solutions and the numerical simulation.

AB - The initial boundary problem is formulated for the model of catalytic bimolecular reactions limited by the lateral interactions of reactants and the surface diffusion of reactants to the reaction centers. The model of catalytic bimolecular reactions is based on the generalized kinetic BET model (GK BET model). It is shown that the problem is solved within the class of infinitely differentiable functions. The obtained results are the basis for finding the precise solutions and the numerical simulation.

UR - http://www.scopus.com/inward/record.url?scp=0031652242&partnerID=8YFLogxK

M3 - статья

AN - SCOPUS:0031652242

SP - 23

EP - 28

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

SN - 1025-3106

IS - 1

ER -

ID: 42742766