DOI

The main form of the representation of a gravitational potential V for a celestial body T in outer space is the Laplace series in solid spherical harmonics (R/ r) n + 1Yn(θ, λ) with R being the radius of the enveloping T sphere. The surface harmonic Yn satisfies the inequality(Formula presented.)The angular brackets mark the maximum of a function’s modulus over a unit sphere. For bodies with an irregular structure σ= 5 / 2 , and this value cannot be increased generally. However, a class of irregular bodies (smooth bodies with peaked mountains) has been found recently in which σ= 3. In this paper, we will prove the exactness of this estimate, showing that a body belonging to the above class does exist and (Formula presented.)for it.

Язык оригиналаанглийский
Страницы (с-по)75-94
Число страниц20
ЖурналCelestial Mechanics and Dynamical Astronomy
Том128
Номер выпуска1
DOI
СостояниеОпубликовано - 1 мая 2017

    Предметные области Scopus

  • Астрономия и астрофизика
  • Космические науки и планетоведение

ID: 15489528