Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
A mapping f: R → R is called a total expansion if (Formula presented.) and (Formula presented.) for all a < b ∈ R; here fn stands for the nth iteration of f. We prove that there exists a smooth total expansion f: R → R such that one of its orbits is a given countable everywhere dense set. We also prove that, for each total expansion f: R → R, there exists a compact set K ⊂ R, referred to as an f-universal compact set, such that the sequence fn(K) is dense in the space Comp(R) of all nonempty compact subsets of R with the Hausdorff metric.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 1691-1694 |
Число страниц | 4 |
Журнал | Differential Equations |
Том | 50 |
Номер выпуска | 13 |
DOI | |
Состояние | Опубликовано - 1 янв 2014 |
ID: 50053000