Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On the Decomposition of Tensor Representations of Symmetric Groups. / Nikitin, P. P.; Tsilevich, N. V.; Vershik, A. M.
в: Algebras and Representation Theory, Том 22, № 4, 15.08.2019, стр. 895-908.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On the Decomposition of Tensor Representations of Symmetric Groups
AU - Nikitin, P. P.
AU - Tsilevich, N. V.
AU - Vershik, A. M.
N1 - Nikitin, P.P., Tsilevich, N.V. & Vershik, A.M. Algebr Represent Theor (2019) 22: 895. https://doi.org/10.1007/s10468-018-9804-6
PY - 2019/8/15
Y1 - 2019/8/15
N2 - Following the general idea of Schur–Weyl scheme and using two suitable symmetric groups (instead of one), we define so called decomposition tensor of tensor representations for finite and infinite symmetric group. This makes more explicit the classical problem of decomposing tensor representations of these groups into irreducible components.
AB - Following the general idea of Schur–Weyl scheme and using two suitable symmetric groups (instead of one), we define so called decomposition tensor of tensor representations for finite and infinite symmetric group. This makes more explicit the classical problem of decomposing tensor representations of these groups into irreducible components.
KW - Decomposition tensor of tensor representations
KW - Infinite symmertic group
KW - Schur-Weyl duality
KW - Symmetric group
UR - http://www.scopus.com/inward/record.url?scp=85048088643&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/decomposition-tensor-representations-symmetric-groups
U2 - 10.1007/s10468-018-9804-6
DO - 10.1007/s10468-018-9804-6
M3 - Article
AN - SCOPUS:85048088643
VL - 22
SP - 895
EP - 908
JO - Algebras and Representation Theory
JF - Algebras and Representation Theory
SN - 1386-923X
IS - 4
ER -
ID: 49789408