Standard

On the Decomposition of Tensor Representations of Symmetric Groups. / Nikitin, P. P.; Tsilevich, N. V.; Vershik, A. M.

в: Algebras and Representation Theory, Том 22, № 4, 15.08.2019, стр. 895-908.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Nikitin, P. P. ; Tsilevich, N. V. ; Vershik, A. M. / On the Decomposition of Tensor Representations of Symmetric Groups. в: Algebras and Representation Theory. 2019 ; Том 22, № 4. стр. 895-908.

BibTeX

@article{cd30a057394141d48c5c91345e8d9bee,
title = "On the Decomposition of Tensor Representations of Symmetric Groups",
abstract = "Following the general idea of Schur–Weyl scheme and using two suitable symmetric groups (instead of one), we define so called decomposition tensor of tensor representations for finite and infinite symmetric group. This makes more explicit the classical problem of decomposing tensor representations of these groups into irreducible components.",
keywords = "Decomposition tensor of tensor representations, Infinite symmertic group, Schur-Weyl duality, Symmetric group",
author = "Nikitin, {P. P.} and Tsilevich, {N. V.} and Vershik, {A. M.}",
note = "Nikitin, P.P., Tsilevich, N.V. & Vershik, A.M. Algebr Represent Theor (2019) 22: 895. https://doi.org/10.1007/s10468-018-9804-6",
year = "2019",
month = aug,
day = "15",
doi = "10.1007/s10468-018-9804-6",
language = "English",
volume = "22",
pages = "895--908",
journal = "Algebras and Representation Theory",
issn = "1386-923X",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - On the Decomposition of Tensor Representations of Symmetric Groups

AU - Nikitin, P. P.

AU - Tsilevich, N. V.

AU - Vershik, A. M.

N1 - Nikitin, P.P., Tsilevich, N.V. & Vershik, A.M. Algebr Represent Theor (2019) 22: 895. https://doi.org/10.1007/s10468-018-9804-6

PY - 2019/8/15

Y1 - 2019/8/15

N2 - Following the general idea of Schur–Weyl scheme and using two suitable symmetric groups (instead of one), we define so called decomposition tensor of tensor representations for finite and infinite symmetric group. This makes more explicit the classical problem of decomposing tensor representations of these groups into irreducible components.

AB - Following the general idea of Schur–Weyl scheme and using two suitable symmetric groups (instead of one), we define so called decomposition tensor of tensor representations for finite and infinite symmetric group. This makes more explicit the classical problem of decomposing tensor representations of these groups into irreducible components.

KW - Decomposition tensor of tensor representations

KW - Infinite symmertic group

KW - Schur-Weyl duality

KW - Symmetric group

UR - http://www.scopus.com/inward/record.url?scp=85048088643&partnerID=8YFLogxK

UR - http://www.mendeley.com/research/decomposition-tensor-representations-symmetric-groups

U2 - 10.1007/s10468-018-9804-6

DO - 10.1007/s10468-018-9804-6

M3 - Article

AN - SCOPUS:85048088643

VL - 22

SP - 895

EP - 908

JO - Algebras and Representation Theory

JF - Algebras and Representation Theory

SN - 1386-923X

IS - 4

ER -

ID: 49789408