DOI

A finite word w is called closed if it has length at most 1 or it contains a proper factor that occurs both as a prefix and as a suffix but does not have internal occurrences. An infinite word u is called closed-rich if the infimum of all possible ratios between the number of closed factors within any factor w of u and square of the length of w exists and is positive. We define this infimum as the closed-rich constant Cu of the infinite closed-rich word u. Puzynina and Parshina (2024) proved that infinite closed-rich words exist. In this paper, we estimate possible values of Cu for an infinite closed-rich word u, and apply these results to estimate the supremum Csup of the closed-rich constants of infinite closed-rich words. We show that 0.0952
Язык оригиналаанглийский
Название основной публикацииCombinatorics on Words (WORDS 2025)
ИздательSpringer Nature
Страницы217-229
Число страниц13
ISBN (печатное издание)9783031975479
DOI
СостояниеОпубликовано - 2025
СобытиеWORDS 2025: biannual international conference on combinatorics on words - Nancy, Франция
Продолжительность: 30 июн 20254 июл 2025
Номер конференции: 15
https://words2025.loria.fr/en/

Серия публикаций

НазваниеLecture notes in Computer Science
ИздательSpringer
Том15729
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференцияWORDS 2025: biannual international conference on combinatorics on words
Сокращенное названиеWORDS 2025
Страна/TерриторияФранция
ГородNancy
Период30/06/254/07/25
Сайт в сети Internet

ID: 142315374