Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On the chromatic number of an infinitesimal plane layer. / Kanel-Belov, A. Ya; Voronov, V. A.; Cherkashin, D. D.
в: St. Petersburg Mathematical Journal, Том 29, № 5, 01.01.2018, стр. 761-775.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On the chromatic number of an infinitesimal plane layer
AU - Kanel-Belov, A. Ya
AU - Voronov, V. A.
AU - Cherkashin, D. D.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - This paper is devoted to a natural generalization of the problem on the chromatic number of the plane. The chromatic number of the spaces ℝn × [0, ε]k is considered. It is proved that 5 ≤ χ(ℝ2 × [0, ε]) ≤ 7 and 6 ≤ χ(ℝ2 × [0, ε]2) ≤ 7 for ε > 0 sufficiently small. Also, some natural questions arising from these considerations are posed.
AB - This paper is devoted to a natural generalization of the problem on the chromatic number of the plane. The chromatic number of the spaces ℝn × [0, ε]k is considered. It is proved that 5 ≤ χ(ℝ2 × [0, ε]) ≤ 7 and 6 ≤ χ(ℝ2 × [0, ε]2) ≤ 7 for ε > 0 sufficiently small. Also, some natural questions arising from these considerations are posed.
KW - Chromatic number of Euclidean spaces
KW - Chromatic number of the plane
KW - SPACE
KW - chromatic number of Euclidean spaces
KW - DISTANCES
KW - SUBSETS
KW - REALIZATION
UR - http://www.scopus.com/inward/record.url?scp=85051003158&partnerID=8YFLogxK
U2 - 10.1090/spmj/1515
DO - 10.1090/spmj/1515
M3 - Article
AN - SCOPUS:85051003158
VL - 29
SP - 761
EP - 775
JO - St. Petersburg Mathematical Journal
JF - St. Petersburg Mathematical Journal
SN - 1061-0022
IS - 5
ER -
ID: 36098250