Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On the Choice of Regression Basis Functions and Machine Learning. / Ermakov, S. M.; Leora, S. N.
в: Vestnik St. Petersburg University: Mathematics, Том 55, № 1, 01.03.2022, стр. 7-15.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On the Choice of Regression Basis Functions and Machine Learning
AU - Ermakov, S. M.
AU - Leora, S. N.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - Abstract: As is known, regression-analysis tools are widely used in machine-learning problems to establish the relationship between the observed variables and to store information in a compact manner. Most often, a regression function is described by a linear combination of some given functions fj(X), j = 1, …, m, X ∈ D ⊂ Rs. If the observed data contain a random error, then the regression function reconstructed from the observations contains a random error and a systematic error depending on the selected functions fj. This article indicates the possibility of an optimal, in the sense of a given functional metric, choice of fj, if it is known that the true dependence obeys some functional equation. In some cases (a regular grid, s ≤ 2), close results can be obtained using a technique for random-process analysis. The numerical examples given in this work illustrate significantly broader opportunities for the assumed approach to regression problems.
AB - Abstract: As is known, regression-analysis tools are widely used in machine-learning problems to establish the relationship between the observed variables and to store information in a compact manner. Most often, a regression function is described by a linear combination of some given functions fj(X), j = 1, …, m, X ∈ D ⊂ Rs. If the observed data contain a random error, then the regression function reconstructed from the observations contains a random error and a systematic error depending on the selected functions fj. This article indicates the possibility of an optimal, in the sense of a given functional metric, choice of fj, if it is known that the true dependence obeys some functional equation. In some cases (a regular grid, s ≤ 2), close results can be obtained using a technique for random-process analysis. The numerical examples given in this work illustrate significantly broader opportunities for the assumed approach to regression problems.
KW - approximation
KW - basis functions
KW - machine learning
KW - operator method
KW - regression analysis
UR - http://www.scopus.com/inward/record.url?scp=85131376545&partnerID=8YFLogxK
U2 - 10.1134/S1063454122010034
DO - 10.1134/S1063454122010034
M3 - Article
AN - SCOPUS:85131376545
VL - 55
SP - 7
EP - 15
JO - Vestnik St. Petersburg University: Mathematics
JF - Vestnik St. Petersburg University: Mathematics
SN - 1063-4541
IS - 1
ER -
ID: 104965519