Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On the Asymptotic Power of the “Energy” Test for the Equality of Two Distributions. / Melas, V.B.; Salnikov, D.I.
в: Vestnik St. Petersburg University: Mathematics, Том 57, № 3, 01.09.2024, стр. 322-330.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On the Asymptotic Power of the “Energy” Test for the Equality of Two Distributions
AU - Melas, V.B.
AU - Salnikov, D.I.
N1 - Export Date: 21 October 2024 Адрес для корреспонденции: Melas, V.B.; St. Petersburg State UniversityRussian Federation; эл. почта: vbmelas@yandex.ru Адрес для корреспонденции: Salnikov, D.I.; St. Petersburg State UniversityRussian Federation; эл. почта: mejibkop.ru@gmail.com
PY - 2024/9/1
Y1 - 2024/9/1
N2 - Abstract: In this study, the asymptotic distribution and the formula for the asymptotic power are found for the “energy” test of the hypotheses on the equality of two distributions in the case of alternative distributions that differ from the zero distribution by the shift parameter and/or the scale parameter. This criterion is an alternative to the well-known Mann—Whitney U test and, as distinct from the latter, allows distributions that differ in terms of the scale parameter to be compared. The efficiency of the results obtained is demonstrated by stochastic simulation for the normal and Cauchy distributions. © Pleiades Publishing, Ltd. 2024. ISSN 1063-4541, Vestnik St. Petersburg University, Mathematics, 2024, Vol. 57, No. 3, pp. 322–330. Pleiades Publishing, Ltd., 2024. Russian Text The Author(s), 2024, published in Vestnik Sankt-Peterburgskogo Universiteta: Matematika, Mekhanika, Astronomiya, 2024, Vol. 11, No. 3, pp. 477–488.
AB - Abstract: In this study, the asymptotic distribution and the formula for the asymptotic power are found for the “energy” test of the hypotheses on the equality of two distributions in the case of alternative distributions that differ from the zero distribution by the shift parameter and/or the scale parameter. This criterion is an alternative to the well-known Mann—Whitney U test and, as distinct from the latter, allows distributions that differ in terms of the scale parameter to be compared. The efficiency of the results obtained is demonstrated by stochastic simulation for the normal and Cauchy distributions. © Pleiades Publishing, Ltd. 2024. ISSN 1063-4541, Vestnik St. Petersburg University, Mathematics, 2024, Vol. 57, No. 3, pp. 322–330. Pleiades Publishing, Ltd., 2024. Russian Text The Author(s), 2024, published in Vestnik Sankt-Peterburgskogo Universiteta: Matematika, Mekhanika, Astronomiya, 2024, Vol. 11, No. 3, pp. 477–488.
KW - asymptotic power of a criterion
KW - Cauchy distribution
KW - normal distribution
KW - verifying the hypothesis of the equality of two distributions
KW - “energy” test
U2 - 10.1134/s106345412470016x
DO - 10.1134/s106345412470016x
M3 - статья
VL - 57
SP - 322
EP - 330
JO - Vestnik St. Petersburg University: Mathematics
JF - Vestnik St. Petersburg University: Mathematics
SN - 1063-4541
IS - 3
ER -
ID: 126219818