Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On the Asymptotic Expansion of the Characteristic Determinant for a 2 × 2 Dirac Type System. / Lunev, A.; Malamud, M.
в: Journal of Mathematical Sciences, Том 284, № 6, 27.09.2024, стр. 795-823.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On the Asymptotic Expansion of the Characteristic Determinant for a 2 × 2 Dirac Type System
AU - Lunev, A.
AU - Malamud, M.
N1 - Export Date: 19 October 2024 Адрес для корреспонденции: Malamud, M.; St.Petersburg State UniversityRussian Federation; эл. почта: malamud3m@gmail.com
PY - 2024/9/27
Y1 - 2024/9/27
N2 - The paper is concerned with the asymptotic expansion of solutions to the following 2 × 2 Dirac type system: (Formula presented.) with a smooth matrix potential Q∈W1n0,1⊗C2×2 and b1 < 0 < b2. If b2 = −b1 = 1, this equation is equivalent to one dimensional Dirac equation. We apply these formulas to get the asymptotic expansion of the characteristic determinant of the boundary value problem associated with the above equation subject to the general two-point boundary conditions. This expansion directly yields new completeness result for the system of root functions of such BVP with nonregular boundary conditions. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.
AB - The paper is concerned with the asymptotic expansion of solutions to the following 2 × 2 Dirac type system: (Formula presented.) with a smooth matrix potential Q∈W1n0,1⊗C2×2 and b1 < 0 < b2. If b2 = −b1 = 1, this equation is equivalent to one dimensional Dirac equation. We apply these formulas to get the asymptotic expansion of the characteristic determinant of the boundary value problem associated with the above equation subject to the general two-point boundary conditions. This expansion directly yields new completeness result for the system of root functions of such BVP with nonregular boundary conditions. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.
UR - https://www.mendeley.com/catalogue/694ba8ea-b245-3f58-96fb-51ab25a97d66/
U2 - 10.1007/s10958-024-07390-9
DO - 10.1007/s10958-024-07390-9
M3 - статья
VL - 284
SP - 795
EP - 823
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 6
ER -
ID: 126383850