Документы

  • bib_pliss_trush2017_3

    Конечная издательская версия, 245 KB, Документ PDF

Small periodic (with respect to time) perturbations of an essentially nonlinear differential equation of the second order are studied. It is supposed that the restoring force of the unperturbed equation contains both a conservative and a dissipative part. It is also supposed that all solutions of the unperturbed equation are periodic. Thus, the unperturbed equation is an oscillator. The peculiarity of the considered problem is that the frequency of oscillations is an infinitely small function of the amplitude. The stability problem for the zero solution is considered. Lyapunov investigated the case of autonomous perturbations. He showed that the asymptotic stability or the instability depends on the sign of a certain constant and presented a method to compute it. Liapunov’s approach cannot be applied to nonautonomous perturbations (in particular, to periodic ones), because it is based on the possibility to exclude the time variable from the system. Modifying Lyapunov’s method, the following results were obtained. “Action–angle” variables are introduced. A polynomial transformation of the action variable, providing a possibility to compute Lyapunov’s constant, is presented. In the general case, the structure of the polynomial transformation is studied. It turns out that the “length” of the polynomial is a periodic function of the exponent of the conservative part of the restoring force in the unperturbed equation. The least period is equal to four.
Язык оригиналаанглийский
Страницы (с-по)235-241
Число страниц7
ЖурналVestnik St. Petersburg University: Mathematics
СостояниеОпубликовано - 31 июл 2017

    Предметные области Scopus

  • Математика (все)

ID: 39264122